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PREDICTION OF RARE-PLANT OCCURRENCE: A SOUTHERN
APPALACHIAN EXAMPLE

SusaN K. WISER,! ROBERT K. PEET, AND PETER S. WHITE

Department of Biology, CB#3280, University of North Carolina,
Chapel Hill, North Carolina 27599-3280, USA

Abstract. Ecologically sound efforts to manage or reintroduce populations of rare
species require detailed knowledge of species habitat requirements. However, the fact that
such species are rare implies that the data needed for habitat characterization are sparse
and that species might well be absent from favorable sites due to chance aspects of dispersal
or mortality. We use four rare plant species endemic to southern Appalachian high-elevation
rock outcrops, to illustrate how nonparametric and parametric logistic regression can yield
predictive models of the probability that a species will occur, given certain site conditions.
Models were constructed for each species at two scales: 100-m? plots and 1-m? subplots.
At the 100-m? plot scale, absences beyond the current geographic range were excluded. At
the 1-m? subplot scale, absences from subplots were only included if the species occurred
elsewhere on the 100-m? plot.

Six significant models resulted; no significant model could be constructed for Solidago
spithamaea or Calamagrostis cainii on 1-m? subplots. For 100-m? plots, the most valuable
predictors were potential solar radiation, a soils gradient related to available soil iron,
boron, and copper, and coarse-scale rock surface texture, although Geum radiatum occur-
rences were difficult to predict at this scale. For 1-m? subplots the best predictors were
available soil cations, potential solar radiation, the proportion of exposed bedrock, and
vegetation height. Along individual gradients response curves were often similar, but no
two species were predicted by identical sets of site parameters. Beyond current range limits,
existence of suitable habitat on 100-m? plots was demonstrated for Solidago spithamaea,
supporting a view that the range limits of this species are not necessarily set by availability
of suitable habitat. Habitat-based models have numerous management applications (such
as to guide restoration and reintroduction efforts as well as to direct searches for additional
populations) and provide a framework for future work on species-specific physiological
requirements.

Key words: Calamagrostis cainii; endemic; generalized additive models; Geum radiatum; habitat
characterization; Houstonia purpurea var. montana; logistic regression; rare plants; rock outcrops;
Solidago spithamaea; southern Appalachian Mountains (USA).

INTRODUCTION

Effective management of rare plant species requires
an understanding of their ecology. Knowledge of which
habitat parameters most accurately predict the occur-
rence of a rare plant species, and the likelihood that
species will occur given specific site conditions, is fun-
damental (Simberloff 1988, Brussard 1991, Falk and
Olwell 1992). The development of analytical approach-
es to predict the occurrence of plant species from en-
vironment has received considerable attention (e.g.,
Austin et al. 1984, Nicholls 1989, Yee and Mitchell
1991), but has generally been applied to common spe-
cies at broad geographic scales. Such approaches ap-
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plied to rare species at a site-by-site scale can be used
by managers to (1) guide searches for unknown pop-
ulations, (2) indicate site suitability for restoration or
reintroduction, (3) predict impacts of habitat degra-
dation and (4) provide a framework for further research
on specific physiological requirements.

In the southern Appalachian Mountains, high-ele-
vation rock outcrops constitute a rare habitat, and many
of the inhabitants grow in few, if any, other habitats
in the region. Forty outcrop species are regionally rare,
including twelve that are either southern Appalachian
endemics or species disjunct from alpine, arctic, and
other treeless habitats far to the north. These species
are noteworthy in that they are considered relicts of a
Pleistocene alpine flora in a region where no alpine
environment currently exists (White et al. 1984, Schaf-
ale and Weakley 1990). Beyond the observation that
they are restricted to outcrops above 1200 m, little
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about their distribution relative to environment has
been published. Implicit in earlier publications is the
assumption that these species persist because condi-
tions peculiar to certain high-elevation outcrops, such
as moist north-facing slopes, closely resemble past al-
pine conditions. Within these macrosites, the species
may be expected to follow the general pattern observed
for other outcrop endemics of the Southeastern United
States and occur on shallow-soiled microsites where
competition and shading from other species is low
(Baskin and Baskin 1988).

In this paper, nonparametric and parametric logistic
regression are used to determine the utility of a range
of physical site parameters in predicting four of the
twelve rare, Pleistocene-relict outcrop species at two
spatial scales. The following questions are addressed
for these four species. (1) At the scale of the 100-m?
plot, which environmental factors best predict species
occurrence? Are these relicts predicted to occur at the
highest elevations and coolest (i.e., lowest potential
solar radiation) sites? (2) At the scale of the 1-m? sub-
plots, which environmental factors best predict species
occurrence? Are soil depth and shading important? (3)
Do the models predict species to occur on mountain
ranges where they are absent, which would suggest
non-environmental control of distribution across moun-
tain ranges? We conclude by examining the strengths
and weaknesses of habitat-based models for conser-
vation applications.

METHODS
Study species

Predictive models were constructed for four rare,
high-elevation rock-outcrop endemics: Geum radiatum
Michx. (Rosaceae), Solidago spithamaea M. A. Curtis
(Asteraceae), Calamagrostis cainii A. S. Hitchcock
(Poaceae), and Houstonia purpurea L. var. montana
(Small) Terrell (Rubiaceae) (hereafter Geum, Solidago,
Calamagrostis and Houstonia, respectively; botanical
nomenclature follows Kartesz 1994). All four are
ranked as critically imperiled globally (G1) by the Na-
ture Conservancy and are listed, or proposed for listing,
as either threatened or endangered by the U.S. Fish and
Wildlife Service (Murdock and Sutter 1987, Murdock
1993, Saunders 1996). These species were chosen for
study because they are globally rare, and also because
they occurred with sufficient frequency in the study
area to allow adequate sampling. In the typology of
Rabinowitz (1981:210), these species have small geo-
graphic ranges and narrow habitat requirements (rel-
ative to the landscape as a whole), and are ‘“‘classic
rarities in the sense of restricted endemics.”’ Local pop-
ulation sizes vary from a few dozen individuals to hun-
dreds. Life-history characteristics (which are mostly
poorly understood) and population data have been as-
sembled for Geum, Solidago, and Houstonia by the
U.S. Fish and Wildlife Service (Murdock and Sutter
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1987, Murdock 1993, Saunders 1996). All four species
are perennials. The limited data on seed dispersal sug-
gest that most dispersal is passive by wind, gravity, or
overland flow. Birds and rodents are frequent on the
outcrops, but their role in seed dispersal is unknown
and probably minimal. Propagation by rhizomes has
been observed in Geum and Houstonia. Only Cala-
magrostis has been observed to colonize disturbed
sites, and this was adjacent to a pre-existing population
(S. K. Wiser, personal observation). Herbarium records
suggest that these species have been present at most of
their current sites for at least a century. Field obser-
vations suggest recent population declines in Solidago,
Geum, and Houstonia, whereas insufficient data are
available to assess population trends in Calamagrostis
(N. Murdock [U.S. Fish and Wildlife Service, Ashe-
ville, North Carolina, USA], personal communication).

Study area

All populations of the four study species occur ex-
clusively on outcrop sites above 1200 m and south of
the Virginia—North Carolina border (Fig. 1). These out-
crops are widely scattered and primarily occur in seven
mountain ranges, each range 25—-60 km from the nearest
range. Compositional differences in vegetation among
outcrops relate to differences in elevation, geology, po-
tential solar radiation, and soil chemistry (Wiser et al.
1996). Wiser et al. (1996) provide a detailed description
of the study area and dominant compositional and en-
vironmental gradients.

Data collection

As part of a larger study on outcrop vegetation, pres-
ence/absence of the four study species was recorded in
154 10 X 10 m (100-m?) plots distributed among 42
peaks in western North Carolina and eastern Tennessee.
Plots were located to include all possible combinations
of major site parameters such as elevation, slope, as-
pect, geology, and topographic position. All known
populations of the four target species were included.
Within each 100-m? plot, two to seven 1 X 1 m (1-m?)
subplots were sampled, depending on the internal het-
erogeneity of the larger plot. For 100-m? plots, the
following site parameters were determined: latitude,
elevation, slope percentage, aspect, bedrock type, pres-
ence of perennial seepage, percentage of exposed bed-
rock, and degree of fracturing (using an index such that
nearly smooth outcrops containing ledges and cracks
<0.3 m wide were classified as ‘‘1,”” and highly frac-
tured and angular outcrops containing ledges and
cracks >0.3 m wide were classified as ‘“3’’). The av-
erage topographic position of each plot was recorded
as an index from O to 10 with 1 being the base of the
outcrop, and 10 being the top. Outcrops were classified
into one of five height classes (1 = <5 m high, 2 =
5-16 m, 3 = >16-32 m, 4 = >32-64 m, 5 = >64
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Map of southern Appalachian Mountain (USA) study area showing 100-m? plot locations (small squares) and

major peaks. Dashed lines separate mountain ranges. Reprinted from Wiser et al. (1996) with permission from the Journal

of Vegetation Science.

m), and into one of six area classes (based on mea-
surements from orthophoto quadrangle maps: 1 = not
visible, 2 = visible, <0.25 ha; 3 = 0.25-1 ha; 4 =
>1-9 ha; 5 = >9-25 ha; 6 = >25 ha).

Soil parameters (pH; percentage organic matter; per-
centage water holding capacity; available calcium,
magnesium, potassium, manganese, phosphorus, sul-
fate, sodium, aluminum, iron, boron, and copper) were
averaged across individual samples taken in each 1-m?
subplot. Soils were analyzed by Brookside Farms Lab-
oratory Association (New Knoxville, Ohio, USA).
Available nutrients were extracted using the Mehlich
3 method (Mehlich 1984). Percentage organic matter
was determined by loss-on-ignition. Variation in soil
parameters was reduced to five major components us-
ing principal components analysis with varimax rota-
tion to reduce collinearity as a preparation for later
analysis (Dunteman 1989). The name assigned each
axis derives from the soil parameters with the highest
loadings (Table 1).

Potential solar-beam irradiation was calculated based
on slope, aspect, and latitude using the equations of

Frank and Lee (1966). Results are reported as an index
that is the ratio of total annual radiation to annual max-
imum potential insolation (Frank and Lee 1966).

Exposure at each of four 90° bearings (towards, op-
posite from, and both perpendiculars to the direction
of maximum exposure) was quantified with a 1-to-5
scale (‘“‘1,” or totally protected, when the height of
neighboring landforms or vegetation was >10 times
the distance to the plot; ““3”” when nearby structures
were intermediate in height relative to distance to the
plot; and “‘5,” or totally exposed, when the height of
such structures was <0.1 times the distance to the plot).
These four values were averaged to produce a com-
posite site-exposure index.

On 1-m? subplots the mean soil depth (based on 16
measurements on an equally spaced grid), source of
moisture (surface runoff, drip from ledges and over-
hangs above, direct precipitation, and perennial seep-
age), percentage shading, percentage bare soil, per-
centage moss cover, and maximum vegetation height
were also assessed. Determinations of slope, potential
solar radiation, exposure, and percentage exposed bed-
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TaBLE 1. Factor loadings of individual soil parameters on the first five varimax-rotated prin-

cipal component axes for (A) 100-m? plots

(N = 154) and (B) 1-m? subplots (N = 577).

Soil Soil Soil Soil Soil
cations moisture iron pH sulfate
Parameter axis axis axis axis axis
A) 100-m? plots
pH 0.15 -0.27 0.13 0.82 -0.13
Boron 0.39 0.05 0.71 0.20 0.03
Aluminum -0.32 —-0.02 0.06 0.61 0.50
SQRT(iron)t -0.29 0.04 0.76 —0.03 —0.08
SQRT(potassium) 0.51 0.62 0.03 0.19 0.19
In(calcium) 0.91 0.08 ~0.05 -0.13 -0.04
In(copper) 0.11 -0.22 0.67 0.04 0.14
In(magnesium) 0.85 0.09 0.03 0.18 -0.21
In(manganese) 0.72 0.17 0.23 0.16 0.06
In(sodium) 0.00 0.42 -0.02 0.71 -0.17
In(organic matter) 0.21 0.92 0.01 —0.12 —0.07
In(phosphorus) 0.15 —0.30 -0.27 —-0.19 0.72
In(sulfate) -0.12 —0.06 0.43 —0.05 0.78
In(water-holding
capacity) 0.05 0.83 -0.07 0.09 —0.20
In(zinc) 0.81 0.22 -0.13 -0.27 0.07
Cumulative variance
explained (%) 28.8 44.6 58.7 68.5 76.6
B) 1-m? subplots
pH 0.21 —0.20 -0.02 0.86 0.01
In(boron) 0.41 0.04 0.68 0.19 0.28
Aluminum —0.46 0.03 —0.06 0.46 0.48
Iron -0.22 —0.03 0.85 —0.15 0.11
SQRT(potassium) 0.46 0.68 0.07 0.08 0.21
In(calcium) 0.92 0.12 —0.10 —0.01 —0.08
In(copper) 0.15 -0.21 0.25 0.17 0.54
In(magnesium) 0.86 0.17 0.07 0.19 —-0.11
In(manganese) 0.76 0.17 0.06 0.20 0.10
In(sodium) 0.04 0.43 0.10 0.62 -0.14
In(organic matter) 0.24 0.90 0.09 —0.06 —0.06
In(phosphorus) 0.14 —0.12 —0.53 —0.31 0.57
In(sulfate) -0.20 0.04 0.15 -0.16 0.86
In(water-holding
capacity) 0.03 0.73 -0.07 0.06 —0.06
In(zinc) 0.80 0.32 -0.15 —0.16 -0.04
Cumulative variance
explained (%) 29.8 42.9 51.1 61.5 73.8

Notes: The highest loading for each soil parameter is italicized. Original units for all variables
are “‘ppm’’ (parts per million), i.e., mg/kg, except pH, organic matter (percentage), and water-

holding capacity (percentage dry mass).
T SQRT = square root.

rock were determined at the smaller scale as well. Wiser
et al. (1996) provide further details on data collection
and treatment of site parameters prior to analysis.

Data analysis

Predictive models were initially developed using a
nonparametric analogue of logistic regression. Logistic
regression is a statistical technique used to predict the
probability of event occurrence (P,) and has been ap-
plied to predict the probability that a plant species will
occur, given certain site conditions (e.g., Austin et al.
1984, ter Braak and Looman 1986, Margules and Stein
1989, Nicholls 1989). Since probability values must lie
between 0 and 1, they cannot be modeled directly from
linear predictors. A logit link function transforms the
value fitted from linear predictors (which can range

from — to «) into a probability value lying between
0 and 1. The deviation of the observed responses from
the fitted responses is measured by the residual devi-
ance (—2 log.L where L = maximum likelihood).

A chi-square test is used to assess the significance
of the difference in residual deviance when a parameter
is included in a model vs. when it is not (df = the
number of parameters being tested). Use of polynomial
or other transformations of the predictive variables can
allow for responses that are nonlinear, such as the use
of a quadratic term to allow for unimodal responses
(ter Braak and Looman 1986, Jongman et al. 1987).

Generalized additive models (GAMs) relax the as-
sumption of a parametrically defined relationship be-
tween the predictor variables and the fitted values. This
is of considerable use in developing models of plant
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response to environmental gradients, as numerous re-
sponse-curve shapes are plausible and the actual shape
is usually unknown prior to analysis. GAMs use a
spline smoothing function to determine the fitted model
that best fits the predictor variables; hence the models
are data driven, rather than model driven as in logistic
regression and other generalized linear models (Yee
and Mitchell 1991). Using GAMs, a binomial model
with a logit link function is analogous to parametric
logistic regression. If there are no interactions with
other variables, graphs of the fitted function and resid-
uals can be examined to determine the general shape
of the response. In GAMs, the degrees of freedom of
the predictor variable reflect the complexity of the
smoothed fitted function. Chi-square tests (as described
above) can be applied to determine which level of com-
plexity results in the most significant decrease in de-
viance. Estimates of total deviance explained are often
used as an overall goodness-of-fit measure in regres-
sion modeling. Unfortunately, for presence/absence
and other binomially distributed data, such estimates
are not valid (Austin et al. 1984), so goodness of fit
cannot be compared between unrelated models.

To reduce the influence of absences resulting from
non-environmental causes, only absences within moun-
tain ranges where the species is known to occur were
included at the model-building stage. This was done
since non-environmental influences (e.g., failure to dis-
perse) were suspected to be of increased importance in
mountain ranges where the species was absent, and
could distort the model. Similarly, for those models
based on the 1-m? subplots, only absences recorded
within 100-m? plots where the species was present were
included so resulting models would reflect microsite
features rather than phenomena influencing occurrence
at the larger scale.

For each species, the best combination of predictor
variables was chosen using forward selection in a pro-
cedure analogous to that outlined by Nicholls (1989),
where (1) all parameters are tested individually, (2) the
one that results in the largest change of deviance given
the degrees of freedom (assessed by the chi-square test)
is added to the model, and (3) the procedure is repeated
with all remaining predictor variables until addition of
another variable does not result in a change in deviance
significant at the 0.05 level. The significance of inter-
actions between significant parameters was tested by
the addition of individual interaction terms to the mod-
els.

Although nonparametric logistic regression is useful
in the development of predictive models, parametric
models are more desirable if they fit the data adequately
(Yee and Mitchell 1991). Response curves were ex-
amined to determine the appropriate parametric model
(e.g., linear, polynomial, etc.). To assess whether the
parametric model predicted P, as adequately as the non-
parametric model, the total deviances of the two models

ECOLOGICAL CONCEPTS IN CONSERVATION BIOLOGY

913

were compared. Three types of residual diagnostics
were examined on the parametric models as suggested
by Nicholls (1989). If a parameter estimate was found
to be highly influenced by a single observation, that
parameter was dropped from the final model.

Because sample sizes were small in comparison to
the number of predictor variables tested, there was a
danger of the forward selection procedure overfitting
the data. This could result in a final model that selects
random environmental variables and has no biological
meaning. To test whether the final models differed from
random expectations, the following approach was used.
For each species, at each scale, 100 data sets were
generated such that the original presences and absences
were randomly assigned to each set of site environ-
mental variables. Each random data set was then fit
with a forward-selection logistic regression using lin-
ear predictors only. While it would be optimal to con-
duct this test using either nonparametric or polynomial
logistic regression as previously outlined, both of these
approaches required interactive computing and are not
practicable for randomization tests. This resulted in a
conservative test when nonlinear responses consider-
ably improved the model (i.e., lowered the deviance
substantially). The original model was judged to be
significant if its final deviance (based on linear pre-
dictors only) was less than that of at least 95 of the
100 random models for that species and plot size.

For the final model P, = 0.7 was arbitrarily chosen
as a level above which occurrence was considered high-
ly probable; above P, = 0.5 occurrence was considered
moderately probable. Within the known range of a spe-
cies, on 100-m? plots where the species was absent but
was predicted to occur, 1-m? subplots were examined
for site suitability. To determine whether plots and sub-
plots beyond the current ranges were appropriate for
the species, an initial requirement was that they have
site conditions within the limits of site conditions used
to generate the original model. This prevented extrap-
olation beyond the bounds of the original model. P,
was then calculated for both plot sizes.

Generalized additive models were computed using
GAIM (Tibshirani Enterprises 1991). Other statistical
analyses were performed using SAS (SAS Institute
1989).

REesuLTS
Predictive value of specific site parameters

Six of the eight final models (all four species on 100-
m? plots and Geum and Houstonia on 1-m? subplots)
had significantly lower final deviances than expected
at random and so reflect biological effects rather than
statistical artifacts, despite small sample sizes relative
to the number of predictor variables (Tables 2 and 3).
On 100-m? plots (Table 3, Figs. 2-4), potential solar
radiation (three species), the soil iron axis (three spe-
cies) and the fracturing index (Geum) were significant
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TABLE 2. Numbers of presences and absences on 100-m?
plots and 1-m? subplots included in models for each of four
plant species endemic to southern Appalachian high-ele-
vation outcrops.

No. of
ranges M2 m?2
where 100-m? plots  1-m? subplots
pres- Pres- Pres-
Species ent ent Absent ent Absent
Calamagrostis cainii 2 14 29 34 21
Geum radiatum 6 23 101 34 62
Houstonia purpurea
var. montana 3 21 50 27 65
Solidago spithamaea 2 10 32 12 26

Note: Only absences on mountain ranges where the species
is known to occur were included in the models.

predictors. Geum, Houstonia, and Solidago all have
their lowest P, at the highest annual potential solar
radiation levels (Fig. 3). This suggests intolerance of
the higher temperatures associated with increased po-
tential solar radiation as expected for such alpine rel-
icts. On the iron axis the response curves are similar
to each other (Fig. 2) with the lowest P, predicted for
all three species at soil axis scores <0.0 (typically with
boron <0.55 mg/kg, copper <2.3 mg/kg and iron <400
mg/kg) and optimal predictions at soil axis scores >1.2
where levels of these micronutrients are higher. The
truncated response of Houstonia, as contrasted with
those of the other species, reflects the smaller gradient
sampled in mountain ranges where it occurs.
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Curves are based on nonparametric generalized-additive-
model (GAM) fits, although linear fits (Calamagrostis and
Houstonia) are, in fact, parametric.

For 1-m? subplots the soil cations axis (Geum and
Houstonia), potential solar radiation (Geum), percent-
age exposed rock (Geum), and vegetation height (Hous-
tonia) were all significant predictors. Geum and Hous-

TABLE 3. Summaries of predictive models for the four rare plant species. For linear responses the nature of the relationship
(+ or —) is indicated. Final deviance is compared between nonparametric and parametric models, with degrees of freedom

for each in parentheses.

Final deviance

Significant Linear = Random-
environmental GAMS Parametric terms ization
Species parameterst Response model model only P valuef
A) 100-m? plots
Calamagrostis cainii iron axis linear (+) 27.83 (2) 27.83 (2) 27.83 (2) <0.01
Geum radiatum fracture linear (+)
iron axis unimodal
p.S.I. linear (—) 91.20(4.9) 915 4) 94.43 (4) 0.01
Houstonia purpurea var. iron axis linear (+)
montana p-S.I. bimodal 57.30 (4.8) 60.64 (5) 63.87 (3) 0.01
Solidago spithamaea p.S.I. linear (—) 29.67 (2) 29.67 (2) 29.67 (2) 0.02
B) 1-m? subplots
Calamagrostis cainii p.S.I. bimodal
pH linear (+) 46.82(4.8) 47.86(4) 59.71 (3) 0.08
Geum radiatum % exp. rock linear (+)
p.S.I. linear (—)
cations axis sigmoidal 95.10 (4.9) 94.75(5) 97.41 (4) <0.01
Houstonia purpurea var. veg. ht. linear (—)
montana cations axis linear (+)
veg. ht. X cations linear (—) 90.61 (4) 90.61 (4) 90.61 (4) 0.01
Solidago spithamaea moss linear (+)
cations axis bimodal? 33.38(5.7) 33.49(5) 43.87 (3) 1.0

t Fracture = rock fracture index; p.s.r. = potential solar radiation; % exp. rock = percentage exposed bedrock; veg. ht.

= vegetation height.

f The percentage of 100 random models having final deviance less than that of the linear terms only of the final models.
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( ), Houstonia purpurea var. montana (— ——), and Sol-
idago spithamaea (- ) along the potential solar-radiation

gradient; 100-m? plots. Curves are based on nonparametric
GAM fits, although linear fits (Geum and Solidago) are, in
fact, parametric.

tonia showed different responses to the soil cations axis
(Fig. 4).

For Geum and Houstonia, predictors tended to be
different at the two plot sizes. For example, for both
species the iron axis was predictive on 100-m? plots
whereas the cations axis was predictive on 1-m? sub-
plots.

Response-curve shapes were highly variable (Table
3, Figs. 2—-4) and included linear, unimodal, sigmoidal,
and bimodal responses. Complex responses were par-
ametrically approximated with quadratic, cubic, and
sine functions. Interaction terms were significant in
only one of the six significant models (Houstonia on
1-m? subplots). Parametric models provided close ap-
proximations of nonparametric models except for
Houstonia on 100-m? plots. An example of the model-
building process is provided for Geum on 100-m? plots
(Table 4).

Calamagrostis cainii

As 10 of the 14 occurrences of Calamagrostis in 100-
m? plots were sampled from Mount LeConte in the
Great Smoky Mountains, the macroscale model pri-
marily distinguished plots on Mount LeConte from all
others. Anakeesta sulfitic slate, the bedrock at Mount
LeConte, is iron rich and produces soils with scores
above 1.1 on the soil iron axis (iron range: 464-972
mg/kg; boron levels are also higher than average), and
P, increases with increased iron-axis score (Table 3,
Fig. 2). Occurrences on Mount LeConte are well pre-
dicted (P,: 0.59-0.99), but three of the four occurrences
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FiG. 4. Probability response curves for Geum radiatum

( ), Houstonia purpurea var. montana with 5 cm vege-
tation (- — —), and H. purpurea var. montana with 40-cm veg-
etation (———) along the soil cations axis; 1-m? subplots. The

curve for Geum is the nonparametric GAM fit. The parametric
fit of Houstonia is shown to illustrate the interaction between
cations and vegetation height.

beyond the Smoky Mountains are only poorly predicted
(P, 0.11-0.17).

Two 100-m? plots without Calamagrostis had P, >
0.76 (one on Mount LeConte, one in the Craggy Moun-
tains). As the 1-m? subplot model was insignificant, no
assessment of microhabitat suitability could be made.

Geum radiatum

On 100-m? plots, presence of Geum was difficult to
predict; only 30% of the plots containing Geum had P,
> 0.50. Occurrences towards the northeastern part of
the study area were the most successfully predicted,
those toward the southwest the most poorly predicted.
Three 100-m? plots lacking Geum had P, > 0.5 (range:
0.58-0.63). All of these plots had at least one 1-m?
subplot where P, of Geum exceeded 0.7. One of these
sites is remote (>100 m) from current populations, so
absence may be a consequence of past extinction or
current dispersal limitation. The remaining two plots
are within 75 m of extant populations.

Houstonia purpurea var. montana

On 100-m? plots over 75% of the occurrences of
Houstonia were accurately predicted with P, > 0.50.
The importance of the iron axis for prediction of Hous-
tonia (Table 3, Fig. 2) is a reflection of the strong
relationship between this soil axis and bedrock type.
Among the mountain ranges where this taxon occurs,
iron-axis scores distinguish mafic from felsic bedrock,
with soils on mafic rock being higher in both boron
and copper than those on felsic rock. Houstonia occurs
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TABLE 4. (A) Stages of the forward-selection nonparametric logistic regression procedure in
fitting the model for Geum radiatum for 100-m? plots. (B) Coefficients and standard errors
for the complete parametric model that best approximates the nonparametric model.

df of
A) Residual Change in  added
Model deviance df deviance predictor P
Intercept 118.94 123.0 1
Intercept + x, 104.70 122.0 14.24 1 <0.001
Intercept + x, + x, 95.54 120.12 9.16 1.88 0.009
Intercept + x; + x, + x; 91.20 119.12 4.34 1 0.037
Parametric model 91.5 120.0 41
B) Parameter
Site parameter estimate 1 sE
Intercept —3.89 2.15
Rock-fracturing index 1.38 0.62
Sin(iron axis) 1.22 0.45
Potential solar radiation —4.39 2.14

Notes: (A) At the first stage, rock-fracturing index (x,) was the best predictor and was linearly
related (df = 1) to the logit of occurrence probability (P,); P, increased with increased degree
of rock fracturing. At the second stage adding the iron axis (x,) with df = 1.88 resulted in the
most significant change in deviance; P, showed a unimodal response to iron-axis score. At the
third stage adding potential solar radiation (x;) with df = 1 resulted in the most significant
change in deviance; P, decreased with increased solar radiation. No additional predictor vari-
ables resulted in a change of deviance with a probability < 0.05 (assessed with a chi-square
test). (B) Only predictors with df > 1 require a parametric approximation, as df = 1 indicates
a linear response. The function sin(iron axis) best approximated the nonparametric relationship

between P, and the iron axis.
1 Degrees of freedom of the full model.

only on mafic bedrock or on felsic bedrock where mafic
minerals occur in nearby pockets or veins. On 1-m?
subplots there is a significant interaction between max-
imum vegetation height and soil cations (Table 3, Fig.
4). The rate of increased P, with increasing cations
declines as vegetation gets taller. When vegetation
height exceeds 50 cm, P, is always below 0.5, regard-
less of cation level.

Five 100-m? plots lacking Houstonia were predicted
as appropriate (P, range: 0.52-0.80), but only two of
the five plots had appropriate 1-m? subplots (i.e., veg-
etation of short stature and high soil cations). One of
these plots is within 20 m of an extant population of
Houstonia; the other is within 100 m of an extant col-
ony. The former is in an area undergoing aberrant mass
wasting of soil resulting from building construction
above, and may be a site where Houstonia occurred in
the past.

Solidago spithamaea

Of the ten occurrences of Solidago on 100-m? plots,
six are well predicted (P, range: 0.52-0.88). One plot
where Solidago occurs is predicted particularly poorly
(P, = 0.05); it has a northwest-facing aspect (324°),
but the slope is nearly flat, resulting in relatively high
potential solar radiation (0.349 J-m=2.s7!).

All 100-m? plots with a P, > 0.7 contain Solidago.
Only one plot lacking Solidago has a P, > 0.5. Suit-
ability at the 1-m? subplot scale cannot be assessed as
the model was not significant. The closest known pop-
ulation is 150 m away.

Predictions for mountain ranges where
a species is absent

No 100-m? plots lacking either Geum or Calama-
grostis had P, > 0.5. Geum occurs on all ranges sam-
pled except the Whiteside Plutons. While 24 100-m?
plots in the Whiteside region fall within the original
model’s site limits, none had P, > 0.04. These plots
have rock surfaces that are generally smoother with
shallower fractures and crevices than plots where Geum
occurs, have high potential solar radiation as a result
of generally south-facing aspects, and have low iron-
axis scores (range from —1.94 to 0.22). Because the
model for Calamagrostis is strongly influenced by the
unique soil conditions on Anakeesta Slate, the inability
of the ' model to predict occurrence on mountain ranges
with different soil conditions may be misleading. For
Houstonia, two plots had P, > 0.5, but neither had
appropriate subplots.

The only species for which a case for the existence
of suitable habitat beyond contemporary range limits
can be made is Solidago. Four 100-m? plots had P, >
0.7; three additional plots had P, > 0.5. Unfortunately,
the lack of a significant subplot model means microsite
suitability cannot be determined.

DiscuUssION

A prerequisite to developing a strategy for the con-
servation of rare plant species, is an understanding of
the habitats in which populations of the species occur.
Numerous studies have focused on life history or site
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factors that may limit populations of rare species (e.g.,
Meagher et al. 1978, Ward 1981, Preston and White-
house 1986, Pavlik 1993), but predictive models based
on habitat parameters are uncommon (see Gehlbach
and Polly [1982], Prober and Austin [1990] for ex-
amples). Habitat parameters have been used to predict
rare species richness (Nillson et al. 1988, Hill and Ked-
dy 1992), but such models do not make predictions
about individual species. Further, many studies of rare
species describe the habitat where a species is found,
but not where it is absent (e.g., Prince and Hare 1981,
Demauro 1994, Pavlovic 1994, but see Lesica 1992,
Menges 1992, and Boyd and Hilton 1994). Unless hab-
itats where it is absent are also examined, models pre-
dicting occurrence cannot be constructed.

Predictive value of specific site parameters

The four alpine relict species examined were ex-
pected to occur on the cooler, moister outcrops studied.
Potential solar radiation was used as an indicator of
this. At a macroscale (100-m? plots), potential solar
radiation was an important predictor for all species but
Calamagrostis, and at a microscale (1-m? subplots) it
predicted Geum. Other important predictors on 100-m?
plots, specifically the fracturing index and iron axis,
are significantly related to either primary or secondary
gradients of vegetation composition (Wiser et al. 1996).
However, elevation, the site parameter most strongly
related to composition at this scale, was not a good
predictor for the species.

For 1-m? subplots, neither soil depth nor percentage
shading were good predictors for the species studied,
although Geum was predicted in part by percentage
exposed bedrock, which is usually correlated with soil
depth (Wiser et al. 1996). Soil depth and shading are
important to the distribution of outcrop endemics else-
where (Baskin and Baskin 1988), and soil depth is
strongly related to subplot composition on the high-
elevation outcrops (Wiser et al. 1996). That soil depth
was not predictive may reflect measurement scale—
soil depth measurements were averaged over the 1-m?
subplot rather than made at the individual plant scale.
Also, both soil depth and shading may be important in
making the outcrops suitable habitat in contrast to sur-
rounding forests, but may be less important in influ-
encing distributions within the outcrops where they
show less variation. Two predictors, the cations axis
and vegetation height are strongly related to secondary
vegetation-composition gradients on the outcrop sub-
plots, but potential solar radiation was not strongly
related to compositional gradients at this scale (Wiser
et al. 1996).

That response curves had a range of shapes under-
scores the importance of testing for higher order re-
lationships between site parameters and species pres-
ence/absence. Often ¢ tests are used to compare site
characteristics where a species is present to those where

ECOLOGICAL CONCEPTS IN CONSERVATION BIOLOGY

917

it is absent (e.g., Lesica 1992, Menges 1992), but this
test is only appropriate if the relationship is monotonic.
Bimodal curves may indicate that the species is out-
competed at its physiological optimum, but is superior
at coping with site conditions that are less favorable
(Jongman et al. 1987). This may be especially impor-
tant for rare species, as low competitive ability is often
suggested as a cause of rarity (e.g., Griggs 1940, Harper
1981). Caution must be exercised in making such an
interpretation however, as bimodal curves may arise
from problems in sampling, analysis, or interpretation
(Austin et al. 1984). For Houstonia five of the ten 100-
m? plots with moderate potential solar radiation were
on felsic rock where the species is usually absent, and
two of the remaining five plots were highly disturbed.
The observed bimodal response may result from these
other influences, and illustrates a difficulty of working
with rare species in uncommon habitats.

Importance of plot size

The finding that for Geum and Houstonia occurrence
was best predicted by different sets of site parameters
for each of the two plot sizes underscores the impor-
tance of attention to spatial scale in the development,
interpretation, and application of such models. Here,
this partly reflects the analytical approach; by restrict-
ing the 1-m?-subplot analysis to those 100-m? plots
where the species occurs, the source of variation that
predicts occurrence for 100-m? plots is effectively re-
moved, allowing predictions to more definitively reflect
microsite differences. Attention to scale is also essen-
tial to judge whether an unoccupied site is suitable for
a species—predictors at one scale must be used in com-
bination with predictors at another. Suitability at one
spatial scale will not guarantee suitability at another.

Prediction of occurrence on mountain ranges
where a species is absent

A definitive statement that unoccupied habitat be-
yond current range limits is unsuitable should not be
based on distributional information alone. Determi-
nation of outcrop suitability for & species necessitates
transplant experiments. Ideally, a study such as this
would also be accompanied by complementary re-
search on the physiological tolerances of the species
(Hodgson 1986). Determination of habitat suitability
based on distributional data alone (cf. Prince and Hare
1981) will result in a conservative assessment. How-
ever, one can judge whether there is likely to be suitable
habitat that is unoccupied, which suggests a non-en-
vironmental mechanism for the absence, such as dis-
persal limitation (cf. Quinn et al. 1994), past extinction
events (cf. White et al. 1984, White and Miller 1988),
or competition. The evidence presented here suggests
that Solidago may be absent from certain mountain
ranges for reasons other than unsuitability of environ-
ment alone.
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Conservation applications

Co-occurrence of rare species in unusual habitats is
a frequently observed phenomenon (e.g., Griggs 1940,
Ogle 1980, Hodgson 1986), and is characteristic of
Southern Appalachian high-elevation outcrops. Hill
and Keddy (1992) suggest that habitats shared by rare
species may imply shared life-history strategies, which
would enable management to be enacted at a group
level rather than integrating multiple management
strategies for individual species. On the outcrops no
two species exhibited the same distribution patterns
across mountain ranges or among plots and subplots
within a mountain range, and each species is predicted
by a different combination of site parameters (Tables
2 and 3). The suitability of a site for a particular suite
of rare species depends on both its position along major
site gradients and the combination of different site pa-
rameters that it provides. The unique responses to hab-
itat imply that management strategies need to account
for differences among species. Analogous observations
that co-occurring rare species have different life-his-
tory strategies (Bradshaw and Doody 1978) and dif-
ferent reasons for their rarity (Fiedler and Ahouse
1992) lend further support to this view.

One of the more compelling motivations to predict
rare-species occurrence from habitat parameters is to
determine site suitability for restoration or reintroduc-
tion of rare species, actions that may play increasingly
important roles in rare-plant conservation in the future
(Maunder 1992, Pavlik et al. 1993, Demauro 1994,
Johnson 1996). For severely degraded sites, records on
species occurrence may be non-existent, and the ability
to determine the probability that a site may have sup-
ported a particular rare species becomes a valuable tool.
For restoration of particularly rare habitats such as the
high-elevation cliffs, roadcuts and other anthropogen-
ically created outcrops could be assessed for suitability
and used as test locations to refine restoration and re-
introduction techniques (e.g., Johnson 1996), and to
serve as reservoirs for genetic material of rare species.

That our knowledge of the distribution of popula-
tions of rare plants is woefully incomplete is exem-
plified by the nearly continuous discoveries of previ-
ously unknown populations in areas frequented by bot-
anists for many years. Surveys of all potential sites for
a species are usually not feasible (Margules and Stein
1989, Nicholls 1989). Exhaustive surveys are especial-
ly problematic for inaccessible habitats such as high-
elevation outcrops. Habitat-based models can be used
to evaluate the likelihood that undiscovered popula-
tions exist and to guide rare-plant searches, thus re-
ducing field time. This approach would be most fruitful
for species that are predicted from parameters that can
be known prior to visiting a site, such as elevation,
slope, potential solar radiation, or geology. Unfortu-
nately for the outcrop species, soil parameters are im-
portant predictors (as indicated by their inclusion in
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five of the six models), yet cannot be known prior to
visiting a site and can only be roughly inferred from

geology.

Limitations of habitat-based models

Although there is potentially great utility in pre-
dicting rare-plant occurrences from environment, re-
searchers and managers should be aware of the limi-
tations of these models. These limitations are especially
relevant for species with small populations that are
isolated from one another. Problems may arise from
(1) small sample sizes combined with uneven occur-
rence frequency in different mountain ranges, (2) con-
founding influences, and (3) genetic differentiation of
populations between mountain ranges.

Because the species studied are rare, prediction may
be hampered by the reduced statistical power of small
sample sizes, the increased chance of model instability,
and the possibility that models are statistical artifacts,
as demonstrated here for Solidago and Calamagrostis
on 1-m? subplots. Highly uneven frequencies in dif-
ferent areas can distort models due to spatial autocor-
relation of environment, as happened here for Cala-
magrostis on 100-m? plots. In such instances, models
will be highly influenced by the site characteristics of
areas where the species is frequent; absences in these
areas will be difficult to predict. Conversely, in areas
where a species occurs but is infrequent, models will
be highly influenced by where the species is recorded
as absent; infrequent occurrences will be difficult to
predict.

At the spatial scales studied here, prediction of spe-
cies occurrence is complicated by influences of com-
petition, predation, dispersal limitation, extinction, and
random events. These may be especially pronounced
in rare species since all of these mechanisms have been
proposed as ultimate causes of rarity (Griggs 1940,
Stebbins 1942, Proctor and Woodel 1975, Harper
1981). The observed absences of Geum and Houstonia
at sites near conspecifics and with suitable environment
implies non-environmental influences on distribution.

Genetic adaptation to local conditions may further
reduce our ability to make models that are predictive
across a species’ entire geographic range, particularly
if populations are highly isolated. In the Southern Ap-
palachians, populations on different mountain ranges
have likely been genetically isolated since soon after
the onset of postglacial warming, if not before. Geum
in the Great Smoky Mountains exhibits several minor
morphological differences from the other Southern Ap-
palachian populations (Bratton and White 1980), and
may have different physiological tolerance as well.

The best test of the predictive models presented here
would be experimental field verification by attempting
to establish plants from seed at sites both where the
species is predicted to occur and where it is not (Kruck-
eberg and Rabinowitz 1985). This could determine if
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current distributions (at all scales) are limited by en-
vironment or not. Long time periods are necessary for
such experiments as it may be conditions of extreme
years rather than average years that determine distri-
bution. When conducting verification studies with rare
plants, however, the side effects of such experiments
must be carefully considered. The required disturbance
may not be appropriate given the fragile nature and
small extent of many rare habitats. In atypical habitats,
selection may favor genetic characteristics that are dis-
advantageous to the original plant population (Pavlik
et al. 1993). Further, in the United States the U.S. Fish
and Wildlife Service currently does not support rein-
troductions of rare species outside of their historic
range (Falk and Olwell 1992). So while field verifi-
cation is scientifically desirable, care must be taken to
ensure that this does not harm the same rare species
one is trying to understand.

Prediction of rare-species occurrence from environ-
ment shows that certain site parameters are better pre-
dictors than others and adds to our understanding of
the distribution and site requirements of species under
present-day conditions. Increased understanding of
controls on distribution serves to focus experimenta-
tion and further research on causal mechanisms. It must
be kept in mind, however, that environments are not
static, particularly over long time spans. Habitat-based
models also provide a focus for questions related to
natural and anthropogenically induced environmental
change. In this study, soil cations were important pre-
dictors for two species. Will soils with different levels
of cations react differentially to acidic precipitation on
the southern Appalachian high peaks? Will this result
in differential impact on different populations? Simi-
larly, occurrence of all four species was significantly
related to potential solar radiation. Would changes in
average or maximum summer temperatures change
their distributions along this gradient? More generally,
will analogues of current habitats exist in the future,
and will human intervention be required to allow rare
plant species to persist? Habitat-based models repre-
sent a necessary step in efforts to understand current
distribution patterns and to predict future distributions
of plants in a changing environment.
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