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Abstract. Because of the high calcium content of its foliage, Cornus florida (flowering
dogwood) has been described as a calcium ‘‘pump’’ that draws calcium from deeper mineral
soil and enriches surface soil horizons. However, over the last two decades an exotic fungal
disease (dogwood anthracnose, Discula destructiva) has decimated populations of this once-
common understory species. Its loss, combined with forest stand development, could alter
intra-stand calcium cycling. We used data from long-term vegetation monitoring plots to
examine the ecological role of C. florida in calcium cycling and to identify changes in annual
foliar calcium cycling over a 20-year period between two sampling intervals, 1977–1979 (pre-
anthracnose) and 1995–2000 (post-anthracnose). Published equations were used to estimate
foliar biomass per species for five forest types: alluvial, typic cove, acid cove, oak–hickory, and
oak–pine. Calcium concentrations derived from foliage samples were used to estimate annual
foliar calcium production per species for understory woody stems (,20 cm dbh) and total
foliar calcium production for overstory stems (�20 cm dbh). At a given level of soil calcium
availability, C. florida foliage contained greater concentrations of calcium than three other
dominant understory species (Tsuga canadensis, Acer rubrum, and Rhododendron maximum).
Between 1977–1979 and 1995–2000, the annual calcium contributions of understory woody
vegetation declined across all forest types, ranging from 26% in oak–pine stands to 49% in acid
coves. Loss of C. florida was responsible for only 13% of this decline in oak–pine stands, but
accounted for 96% of the decline in typic coves. In oak–hickory and oak–pine stands, we
observed large increases in the foliar biomass of T. canadensis, a species whose calcium-poor
foliage increases soil acidity. Increases in overstory foliar biomass and calcium offset
understory losses in three forest types (alluvial, typic coves, and oak–pine) but not in oak–
hickory and acid cove stands. Overall, calcium cycling in oak–hickory stands was more
negatively affected by the loss of C. florida than the other forest types. Oak–hickory forests
comprise over a third of the total forest cover in the eastern United States, and decreases in
annual calcium cycling could have cascading effects on forest biota.

Key words: calcium cycling; Cornus florida; dogwood anthracnose; exotic disease; forest stand
development; long-term monitoring; soil calcium availability; southern Appalachian Mountains; temperate
forests; tree mortality; Tsuga canadensis; understory vegetation.

INTRODUCTION

Calcium (Ca) serves many functions in regulating

physiological and structural processes of plants (Jones

1998, McLaughlin and Wimmer 1999, Mengel et al.

2001). Despite its important role in plant metabolism

and growth, Ca mobility is low and its uptake and

distribution rate is a limiting factor for many key plant

functions (Jones 1998, McLaughlin and Wimmer 1999).

For these reasons, McLaughlin and Wimmer (1999)

hypothesized that Ca supply exerts considerable control

on both the structure and function of forest ecosystems.

Over the past two decades numerous studies have

suggested that human activities are depleting ecosystem

Ca across a broad range of forests in eastern North

America (Federer et al. 1989, Cronan and Schofield

1990, Johnson and Lindberg 1992, Huntington 2000,

Huntington et al. 2000) and Europe (Matzner and

Murach 1995, Jönsson et al. 2003). Most studies have

identified atmospheric deposition of sulfur and nitrogen

oxides as a cause of soil acidification, resulting in

aluminum mobilization and cation leaching (Cronan

and Schofield 1990, Likens et al. 1996, Lawrence et al.

1999, Driscoll et al. 2001). In addition, reduced

atmospheric deposition of Ca (Johnson et al. 1994)

and uptake of Ca into woody biomass (Johnson et al.

1988, Johnson and Todd 1990) have been implicated in

losses of Ca within forest ecosystems.

Within forest stands, Ca loss occurs in forest-floor

organic horizons as a result of aluminum migrating from

deeper soil horizons and displacing Ca (Lawrence et al.
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1995). Because of their high nutrient content compared

to mineral soil, organic horizons are the primary rooting

layer in forests (Lawrence et al. 1995) and contain the

majority of soil fauna (Pritchett and Fisher 1987).

Calcium losses in this layer have had serious impacts on

other organisms. For example, on low-nutrient soils in

the Netherlands, loss of snail shells linked to acid

deposition limited the reproductive success of the Great

Tit (Parus major; Graveland 1996). In the central

Appalachian Mountains, land snail density and species

richness were positively correlated with Ca availability

(Hotopp 2002), and a similar impact on other passerine

birds may be occurring.

Woody-species composition strongly influences soil

chemistry, including exchangeable aluminum concentra-

tion and Ca availability (Blair 1988, Finzi et al. 1998,

Dijkstra and Smits 2002). Soils beneath Acer saccharum

trees have greater Ca availability (Dijkstra and Smits

2002) and lower levels of exchangeable aluminum (Finzi

et al. 1998) than soils beneath Tsuga canadensis trees.

Thomas (1969) found significantly greater exchangeable

Ca under Cornus florida trees than under Pinus taeda.

Because of the high Ca content and rapid decomposition

of its foliage (Thomas 1969, Blair 1988), numerous

authors have suggested that C. florida, one of the most

common understory trees in eastern North America,

may have an important ecological role in the Ca

economy of forest stands (Thomas 1969, McLemore

1990, Hiers and Evans 1997, Jenkins and White 2002).

As with most woody plants, Ca concentrations increase

in C. florida foliage throughout the growing season, and

no net resorption of Ca prior to leaf abscission has been

observed (Kost and Boerner 1985, Potter et al. 1987).

While numerous studies have shown that overstory

vegetation heavily dominates total stand biomass (Crow

1978, Rutkowski and Stottlemyer 1993, Son et al. 2004),

the relative contributions of overstory and understory

woody vegetation to annual foliar biomass and Ca

cycling have received limited attention.

Cornus florida is currently threatened across much of

its range by Discula destructiva Redlin, a destructive

fungus that causes dogwood anthracnose (Daughtrey

and Hibben 1994, Holzmueller et al. 2006; see Plate 1).

Genetic testing suggests that D. destructiva was intro-

duced recently, possibly from Asia (Britton 1994).

Mortality of C. florida has been severe over the past

two decades throughout its range. In Franklin County,

Tennessee (USA) Hiers and Evans (1997) observed a

98% decrease in C. florida density within a cove forest

between 1983 and 1995. In western North Carolina

(USA) Wyckoff and Clark (2002) observed a 15%

annual mortality rate for C. florida between 1991 and

1998. In Great Smoky Mountains National Park

(GSMNP) between the late 1970s and 2000, decreases

in the density of C. florida ranged from 69% in oak–pine

stands to .90% in cove forests (Jenkins and White

2002). Over this same period in GSMNP, the understory

importance of T. canadensis has more than doubled

across forest types in response to the loss of C. florida

and over 60 years of fire suppression (Jenkins and White
2002). Based on these changes, we hypothesized that the

rapid loss of a ‘‘calcium-pumping’’ species (C. florida)
combined with a drastic increase in a species with low

levels of foliar Ca (T. canadensis), has altered Ca cycling
and availability in the forest floor and surface soil
horizons of these forests, possibly impacting a chain of

associated flora and fauna. Further, we hypothesized
that these impacts are more pronounced on sites with

low levels of available Ca.
In this paper, we use data from a network of

permanent vegetation plots in GSMNP to examine
how the loss of C. florida trees and other changes in

forest composition and structure have affected the
annual cycling of Ca to the forest floor. More

specifically, we address the following questions: (1)
How does the Ca concentration of different understory

woody species vary? (2) Does C. florida concentrate
more Ca into its foliage than other dominant understory

species on sites with low Ca availability? (3) Based upon
calculated foliar biomass and Ca content, how did the

amount of Ca returned to the forest floor annually by C.
florida and other understory woody species change over

a 20-year period (between 1977–1979 and 1995–2000)
following anthracnose infection? (4) Based upon calcu-
lated foliar biomass and Ca content, how did the relative

contributions of overstory and understory woody
vegetation to foliage biomass and annual Ca cycling

change over a 20-year period following anthracnose
infection?

METHODS

Study site

Because of its biotic diversity, large size (.200 000
ha), and protected status, Great Smoky Mountains

National Park (GSMNP), USA, is internationally
renowned as a center of biological diversity. Complex

ecological gradients combine to create a diverse mosaic
of biological communities. Elevations in the Park range
from 267 m to 2025 m and the rugged topography

includes rocky summits, incised drainages, talus slopes,
and level valleys. Annual rainfall varies from 140 cm at

low elevations to .200 cm on some high peaks. Seventy-
nine unique vegetation associations comprised of nearly

1600 species of vascular plants have been identified
within GSMNP (White et al. 2003, NPSpecies 2006).

Because over 20% of the Park was never cleared of
timber, GSMNP also contains one of the largest tracts

of primary forest in eastern North America (Pyle 1988).
Between 1977 and 1979, 287 permanent 0.1-ha (50 3

20 m) vegetation plots were established in the western
end of GSMNP (White and Busing 1993). Watersheds

were divided into sample sites based upon elevation,
slope position, and aspect, and plots were randomly

located within each sample site. These plots cover a
broad range of site conditions and disturbance histories

and include areas of mature forest, abandoned agricul-

MICHAEL A. JENKINS ET AL.870 Ecological Applications
Vol. 17, No. 3



tural land, limestone substrates, and past burning. For

this study, we used data from 84 plots that contained

Cornus florida and were resampled as part of GSMNP’s

long-term monitoring program and other research

projects. Plot data were used to classify plots into five

broad forest types: acid cove, typic cove, alluvial, oak–

hickory, and oak–pine (Jenkins and White 2002). Recent

evaluation of data from plots that did not contain

dogwood in 1977–1979 revealed that there has been little

or no invasion of C. florida into new areas.

Acid cove forests were on gentle to moderately steep

slopes and flats between 430 and 860 m elevation. They

were often located near streams within concave and v-

shaped drainages. Typic cove forests were in more-

protected topographic positions on gentle to moderate

slopes with northerly aspects and elevations of 410–890

m. Alluvial forests were found on flats along medium-

sized perennial streams between 330 and 640 m

elevation. Soils underlying this forest type were relative-

ly deep and loamy with large rocks. Most alluvial forest

stands were formerly cleared for farming and settlement

(Pyle 1988). Oak–hickory forests were generally on

moderately steep northwest to south facing slopes

ranging from 310 to 1020 m elevation and oak–pine

forests were typically found on narrow ridges and

knobs, middle and upper slopes, and other exposed

sites. Aspects were generally southeast–northwest and

slopes were gentle to moderately steep.

Field sampling and laboratory analysis

Data were collected from 84 permanent plots during

two sampling intervals: 1977–1979 and 1995-2000. Plots

were distributed across five forest types, alluvial forests

(n¼ 11), typic cove forests (n¼ 16), acid cove forests (n¼
13), oak–hickory forests (n¼ 34) and oak–pine forests (n

¼ 10). Within each 20 3 50 m plot, the dbh (diameter at

breast height¼1.37 m) of all living stems �1 cm dbh was

measured to the nearest 0.1 cm and recorded by species

during the 1977–1979 survey, and for 76 of 84 plots

remeasured during the 1995–2000 survey. For eight plots

remeasured between 1995 and 2000, the density of all

trees ,10 cm dbh were tallied by species into two dbh

classes: 1–4.9 cm and 5.0–9.9 cm. On these eight plots,

the dbh of all trees �10 cm was measured and recorded

by species.

Soil was sampled at 8 to 10 points throughout each

plot and pooled into one sample per plot. At each

sampling point within a plot, a hand spade was used to

collect a sample of mineral soil from the A-horizon.

Sampling depth was ;10 cm on most plots. Samples

were dried at 438C for 8 h, ground, and sifted through a

2-mm (number 10 mesh) sieve. Calcium and other

cations were extracted from the soil by mixing 25 mL of

1 mol/L neutral, ammonium acetate with 5 g of soil and

shaking for 30 min (Suarez 1996). The filtered extract

was analyzed with an inductively coupled plasma atomic

emission spectrometer to determine the molar equiva-

PLATE 1. (Left) Flowering dogwood (Cornus florida) foliage during the early stage of infection with dogwood anthracnose
(Discula destructiva). The edges of the leaves show the first symptoms of the disease, developing spots that extend down the leaf
margins as the disease progresses. The fungus eventually reaches the bole of the tree where cankers develop, girdling and killing the
tree. Infected trees growing in shaded conditions may die within 1–3 years of first infection; saplings may die in the same year they
are infected. Photo credit: National Park Service. (Right) Photographed in 1959, this C. florida tree was thought to be the largest
ever documented in GSMNP. Prior to anthracnose, C. florida often dominated the understory of stands that regenerated after
logging and agricultural use. Photo credit: National Park Service.
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lents of cations, including calcium (ICP-AES [inductive-

ly coupled plasma atomic emission spectrometer];

Soltanpour et al. 1996). This procedure saturates all

soil exchange sites with ammonium ions (Sumner and

Miller 1996). The ammonium ions are then dislodged

with an acidic extractant and the cation exchange

capacity (CEC) is calculated from the amount of

ammonium thus displaced. The molar equivalents of

individual cations (including calcium) are compared to

the CEC and the base saturation percentage of each

cation is determined. All soil analyses were performed

by A&L Analytical Laboratories, Memphis, Tennessee,

USA.

Between late August and late October of both 2001

and 2003 we collected foliage from C. florida trees across

the 84 plots we resampled. We also sampled the two or

three most common understory woody species other

than C. florida present in each plot. Typically, three

individual trees of each species were sampled. However,

no living C. florida trees remained on 16 plots, and on

many plots there were fewer than three living C. florida

trees. We used telescopic pole cutters to collect foliage at

various positions in the crown to account for leaf

development in response to varying light levels within

the canopy. Specifically, the crown was divided into four

quarters and leaves were collected from throughout each

quarter when possible. A cord with a weight attached

was thrown over higher branches and used to bend them

down for sampling with the pole cutters. Generally, we

were unable to collect foliage samples from overstory

trees (�20 cm dbh). We combined all leaves from each

tree into a single composite sample.

All samples were dried at 658C for 72 h and fine-

ground using a coffee grinder. All subsequent analyses

were performed at the Analytical Research Laboratory

of the University of Florida in Gainesville, Florida,

USA. Samples were digested in a muffle furnace at

5008C for five hours before being dissolved in 6 mol/L

HCl. Concentrations of Ca were determined on an

inductively coupled plasma emission spectrometer (Per-

kin-Elmer Plasma 400ICP/AES; Perkin-Elmer, Nor-

walk, Connecticut, USA). All Ca concentrations are

presented as milligrams per liter, mg/L.

Foliar biomass

Foliar biomass was calculated from dbh data using

allometric equations (Appendix A). We did not calculate

foliar biomass of Rhododendron maximum or Kalmia

latifolia. All published biomass equations for these two

species were based upon diameter at ground level, which

is not measured as part of the GSMNP Vegetation

Monitoring Protocols.

Cornus florida foliar biomass from the 1977–1979

sampling interval was estimated using a species-specific

equation developed by Boerner and Kost (1986) prior to

infection by dogwood anthracnose. For the 1995–2000

remeasurement, C. florida biomass was calculated with

both the Boerner and Kost (1986) equation and a

species-specific equation developed by Martin et al.

(1998) in the southern Appalachians after dogwood

anthracnose infection. While the equations of Boerner

and Kost (1986) and Martin et al. (1998) show similar

relationships between dbh and woody biomass, the

output of the Martin et al. (1998) equation suggests that

post-anthracnose stands are producing considerably less

foliar biomass (Fig. 1). All foliar biomass values were

converted to kilograms per hectare, kg/ha. Mean foliar

biomass was calculated per species for each of the five

forest types. Biomass was calculated separately for

understory (,20 cm dbh) and overstory (�20 cm dbh)

vegetation. We used 20 cm dbh as the break between

understory and overstory vegetation since it represented

the maximum diameter for C. florida trees in both

temporal sample intervals.

Foliar calcium

On each plot, foliar Ca concentrations (in milligrams

per liter, mg/L) of all trees were averaged by species. To

determine foliar Ca content of each species on a plot, we

converted this average Ca concentration to a percentage

FIG. 1. Woody and foliar biomass curves for Cornus florida
based upon equations developed by Beorner and Kost (1986)
and Martin et al. (1998). Boerner and Kost (1986) equations
were developed prior to the onset of dogwood anthracnose;
Martin et al. (1998) equations were developed after impacts of
anthracnose. The two sets of equations yield similar results for
woody biomass, but Martin et al. (1998) yields much less foliar
biomass for a given tree diameter.
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and multiplied this value by the foliar biomass of each

species. On plots with 100% C. florida mortality, Ca

concentration values of the nearest plot of the same

forest type were used to calculate foliar Ca content in

1977–1979. Since some of the species on our plots are

conifers that do not drop all their leaves in a given year,

we used leaf life-span values determined by Reich et al.

(1999) to estimate the proportion of leaves dropped

yearly for each species. These values were: 60 months for

T. canadensis, 21 months for P. strobus and 33 months

for yellow pine species (Pinus echinata, P. rigida, and P.

virginiana). While we did not collect foliage samples

from several less common species, on average our Ca

concentration data allowed us to determine the Ca

content of .96% of the foliar biomass calculated for

each plot. All Ca-content values were converted to

kilograms per hectare, kg/ha. Mean values were

calculated by species for understory vegetation (,20

cm dbh) in each of the five forest types.

Data analysis

We used nonlinear regression to examine how the four

dominant understory species (C. florida, Tsuga canaden-

sis, Acer rubrum, and R. maximum) differ in their ability

to concentrate foliar Ca on sites with low Ca availabil-

ity. A nonlinear response curve was used to describe the

relationships between foliar Ca content of each species

(response variable) and percentage soil Ca saturation

(predictor variable). We used percentage Ca cation

saturation to represent available soil Ca since this

measurement best represents the ease with which Ca

may be displaced and taken up by plants (Brady 1990).

A nonlinear function was also used to examine the

relationship between the foliar-to-soil Ca ratio and

percentage soil Ca saturation. We estimated four

parameters using the Marquardt-Levenberg nonlinear

least squares algorithm. Plots of Studentized residuals

vs. fitted values were used to assess the regression

assumption of constant variance (Neter et al. 1996).

Residual plots and standard techniques were used to

screen for and evaluate the influence of potential outliers

(Neter et al. 1996).

We used two-way repeated-measures ANOVA with

sampling interval as the repeated factor and forest type

as the nonrepeated factor to compare changes in

individual understory species (including C. florida)

biomass and Ca between sampling intervals and among

forest types. Two-way repeated-measures ANOVA was

also used to compare changes in total understory foliar

biomass, total overstory foliar biomass, and total foliar

biomass (understory and understory). Changes in total

overstory Ca content were also compared using two-way

repeated-measures ANOVA. Log10- and square-root

transformations were used to homogenize variances and

improve normality when necessary. Nontransformed

summary data are presented for ease of interpretation.

RESULTS

Understory foliar calcium concentrations and uptake

The foliar Ca concentration of understory woody

vegetation varied greatly (Table 1). Concentrations

ranged from 2920 mg/L for Pinus strobus to 22 300

mg/L for Tilia americana. Cornus florida and Lirioden-

dron tulipifera foliage contained the next highest Ca

TABLE 1. Tree sampling data for the 84 Great Smoky Mountains National Park (USA) resampled plots together with calcium
concentration data for the various species, arranged in descending order of Ca concentration.

Ca concentration (mg/L)�

Species Common name No. sampled Freq.� Mean 6 SE Range§

Tilia americana American basswood 2 13 22 300 6 5610 16 690–27 910
Liriodendron tulipifera tulip poplar 7 34 17 400 6 2692 8120–27 170
Cornus florida flowering dogwood 120 68 17 302 6 621 3289–34 460
Fraxinus americana white ash 2 18 14 870 6 4470 10 400–19 340
Acer saccharum sugar maple 15 25 13 109 6 758 8520–20 560
Halesia tetraptera mountain silverbell 41 47 13 002 6 431 8500–19 280
Carpinus caroliniana American hornbeam 6 14 12 745 6 1477 9490–19 400
Rhododendron maximum rosebay rhododendron 42 25 11 705 6 362 4551–16 890
Acer pensylvanicum striped maple 5 47 11 014 6 2234 7240–19 610
Carya spp. hickory species 3 49 9823 6 382 9070–10 300
Betula lenta black birch 2 45 9575 6 2175 7400–11 750
Magnolia spp. magnolia species 3 35 9560 6 1494 7220–12 340
Kalmia latifolia mountain laurel 6 15 9205 6 357 8240–10 740
Oxydendrum arboreum sourwood 9 54 9120 6 880 6420–14 960
Lindera benzoin spicebush 3 6 8483 6 1651 6430–11 750
Acer rubrum red maple 117 81 8268 6 238 3677–17 230
Nyssa sylvatica blackgum 18 49 7862 6 362 5440–10 670
Quercus spp. oak species 8 50 7341 6 677 5730–11 130
Tsuga canadensis eastern hemlock 184 76 4632 6 114 1826–10 370
Pinus spp. pine species 3 18 3601 6 780 2041–4400
Pinus strobus white pine 24 54 2920 6 158 1951–4859

� Frequency¼ number of plots (out of the total 84 plots) on which the species was found.
� Calcium concentration of foliage.
§ Calcium concentration range by species across all plots sampled in 1995–2000.
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concentrations (17 302 and 17 400 mg/L, respectively).
Among the dominant understory species (C. florida,

Acer rubrum, Tsuga canadensis, and Rhododendron
maximum), C. florida foliage contained the greatest
concentration of Ca. The Ca concentration of A. rubrum

(8268 mg/L) was less than half that of C. florida, and
that of T. canadensis was less than a third (4632 mg/L).

Compared to A. rubrum and T. canadensis, R. maximum
foliage was relatively rich in Ca (11 705 kg/L). Cornus

florida foliage exhibited the greatest range of Ca
concentrations and highest single-plot value of any
species (34 460 mg/L).

Cornus florida displayed greater uptake of Ca into its
foliage than did the other dominant understory species.

Cornus florida foliage contained more Ca at a given level
of soil Ca saturation than T. canadensis, A. rubrum, or

R. maximum (Fig. 2). In addition, C. florida Ca
concentration continued to increase with increasing soil

Ca saturation after the curves of the other species leveled
off. Cornus florida exhibited a much greater relative
concentration of Ca in its foliage on low-Ca sites than

did the other three dominant species, and C. florida also
exhibited a much higher ratio of foliar Ca to soil Ca

than other species on sites with low soil Ca saturation.
The foliar Ca concentrations and foliar Ca to soil Ca

ratios of the other threes species showed much less
change with increasing soil Ca saturation compared to
C. florida.

Changes in understory foliar biomass and calcium content

Both understory foliar biomass and foliar Ca contri-
butions have declined within the five forest types

(Appendix B). Typic coves exhibited the greatest decline

in foliar biomass (from 683 kg/ha in 1977–1979 to 365

kg/ha in 1995–2000; 47% decline) and alluvial and oak–

pine stands exhibited the least decline (from 1339 kg/ha

to 1039 kg/ha and from 1492 kg/ha to 1157 kg/ha,

respectively; a 22% decline for both types). Oak–hickory

and acid cove stands exhibited moderate decreases in

foliar biomass. Foliar biomass declined 34% in oak–

hickory forests (from 1238 kg/ha to 818 kg/ha) and 38%

in acid coves (from 925 kg/ha to 569 kg/ha). However,

acid cove and oak–hickory stands exhibited the greatest

decrease in total foliar Ca content. In acid cove

understories, foliar Ca inputs declined from 8.16 kg/ha

to 4.16 kg/ha; a 49% decline. In oak–hickory stands, Ca

inputs declined from 11.57 kg/ha to 6.73 kg/ha; a 42%

decline. Calcium input declines in the understories of the

other three forest types ranged from 23% in typic coves

(from 7.76 kg/ha to 5.95 kg/ha) to 27% in alluvial stands

(11.14 kg/ha to 8.08 kg/ha).

We observed a significant interaction (P , 0.001)

between forest type and sampling interval for total

understory foliar biomass, indicating differences in the

decline among forest types. In 1977–1979 there were no

significant differences in biomass among forest types.

However, in 1995–2000 typic coves contained less foliar

biomass than the other three forest types (P , 0.001 for

all types). In addition, oak–pine stands also contained

greater foliar biomass than acid cove stands in 1995–

2000 (P , 0.001). While two-way repeated-measures

ANOVA revealed a significant interaction between

forest type and sampling interval for total biomass

(combined overstory and understory) post hoc tests

showed no significant differences (P . 0.1 for all types).

FIG. 2. Regression curves of foliar calcium and the ratio of foliar Ca to soil Ca vs. percentage soil Ca cation saturation for (A
and B) Cornus florida, (C and D) Tsuga canadensis, (E and F) Acer rubrum, and (G and H) Rhododendron maximum. Curves were fit
with the equation f¼ (a � d )/[1þ (x/c)b]þ d.
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Changes in the contribution of C. florida

to foliar biomass and calcium cycling

The loss of C. florida between 1977–1979 and 1995–

2000 has resulted in a loss of C. florida foliar biomass

and foliar Ca content within the five forest types (Fig. 3).

Prior to the onset of dogwood anthracnose infection,

mean C. florida foliar biomass ranged from 81 kg/ha on

acid cove plots to 207 kg/ha on oak–hickory plots. The

decrease in biomass and Ca content was greatest in acid

coves, where C. florida foliar biomass and Ca content

declined by 84 and 85%, respectively. However, C.

florida foliar biomass and Ca content were greatest in

oak–hickory stands, where mean foliar Ca contributions

declined from 3.84 kg/ha in 1977–1979 to 1.66 kg/ha in

1995–2000. Interestingly, foliar Ca contributions in

1977–1979 showed a large range on individual plots

across forest types, varying from a low of 0.24 kg/ha in

acid cove stands to a maximum of 27.72 kg/ha in oak–

hickory stands. Following the impacts of anthracnose,

oak–hickory stands still contained the greatest C. florida

foliar biomass and Ca content, although inputs declined

by 53 and 57%, respectively. Following anthracnose

infection, the range of Ca inputs from C. florida on

individual plots ranged from a low of 0 kg/ha and to a

maximum of 10.13 kg/ha in oak–hickory stands. Foliar

Ca inputs after anthracnose infection, based upon the

foliar biomass equation developed by Martin et al.

(1998), were much lower than pre-anthracnose levels,

with no forest type exceeding a mean input of 1 kg/ha.

In addition, the maximum input on an individual plot

was only 6.23 kg/ha in an oak–hickory stand.

Loss of C. florida accounted for much of the loss in

understory Ca cycling across the five forest types

(Appendix B). In typic cove stands, the loss of C. florida

was responsible for 96% of the observed decrease in

calcium inputs between 1977–1979 and 1995–2000. The

loss of C. florida accounted for 59% of the observed loss

in alluvial stands, 45% in oak–hickory stands, and 33%

in typic cove stands. The loss of C. florida made

FIG. 3. Annual foliar (A) biomass and (B) calcium inputs from Cornus florida on five forest types. Values for the 1977–1979 and
1995–2000 sampling intervals were calculated using the foliar biomass equation developed by Boerner and Kost (1986). The
equation developed by Martin et al. (1998) was also used to calculate values for the 1995–2000 sampling interval [‘‘1995–2000
(M)’’]. Plots show means (dashed horizontal lines), medians (solid horizontal lines), 25th and 75th percentiles (box ends), and 10th
and 90th percentiles (whiskers). All outliers are also depicted (�). Values are provided for two outliers (n) in oak–hickory forests
that were outside the range of the y-axis. Two-way repeated-measures ANOVA with Tukey’s multiple-comparison tests were used
to compare 1977–1979 means to 1995–2000 and 1995–2000 (M) means across all forest types: *P , 0.05, **P , 0.01, ***P , 0.001.
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relatively minor contribution (13%) to the total loss of

Ca in oak–pine stands.

We observed a significant interaction between forest

type and sampling interval for C. florida foliar biomass,

indicating differences in the decline among forest types.

Results from Tukey pairwise multiple-comparison tests

show no significant differences in foliar biomass for the

first sampling interval (1977–1979; P values ranged from

0.061 to 0.983). However, in 1995–2000 oak–hickory

plots contained greater foliar biomass than did acid cove

plots (P ¼ 0.006). The interaction between forest type

and sampling interval was insignificant for foliar Ca

content (P ¼ 0.212).

Changes in the contributions of other understory species

to foliar biomass and calcium content

In addition to changes in understory foliar biomass

and Ca content resulting from the loss of C. florida, we

observed changes in the foliar biomass and Ca of other

species across the five forest types (Appendix B). In

alluvial understories, foliar biomass from Pinus spp.

declined from 175 kg/ha to 24 kg/ha and foliar Ca

content declined from 0.63 kg/ha to 0.09 kg/ha (P ,

0.05 and P , 0.001, respectively). In addition, Ca inputs

from L. tulipifera decreased from 1.80 kg/ha to 1.17

kg/ha (P , 0.1), but inputs from T. canadensis increased

slightly from 0.69 kg/ha to 0.83 kg/ha (P , 0.05). In

typic coves, understory foliar biomass and Ca contri-

butions from Halesia tetraptera declined (P , 0.05 and

P , 0.001, respectively). Calcium contributions from

understory L. tulipifera trees also declined in typic coves

(from 0.94 kg/ha to 0.38 kg/ha; P , 0.01). In acid coves,

the foliar biomass and Ca contributions of Oxydendrum

arboreum and Carya spp. declined. Oak–hickory stands

exhibited declines in the foliar biomass and calcium

contributions of A. rubrum, Carya spp., O. arboreum,

and Quercus spp. The inputs of foliar Ca from T.

canadensis increased in oak–hickory stands from 0.61

kg/ha to 0.94 kg/ha. This increase only offset a small

portion of the total Ca loss in this forest type (4.84 kg/ha

between 1977–1979 and 1995–2000). In 1977–1979,

Quercus spp. contributed more foliar biomass and Ca

than any other species in oak–pine stands (531 kg/ha

and 3.9 kg/ha, respectively). However, in 1995–2000

both foliar biomass (163 kg/ha) and Ca (1.24 kg/ha)

contributions from Quercus spp. declined greatly (69%

and 68%, respectively).

Two-way repeated-measures ANOVA revealed a

significant interaction between sampling interval and

forest type for foliar biomass of Quercus spp. However,

post hoc tests revealed no changes in relative foliar

biomass of Quercus spp. among forest types between

sampling intervals. During both sampling intervals,

oak–pine and oak–hickory stands contained greater

Quercus spp. foliar biomass than the other forest types

(P , 0.05 for all types). Analyses also revealed a

significant interaction for A. pensylvanicum. In 1977–

1979, the foliar biomass of A. pensylvanicum did not

differ among forest types (P . 0.05 for all types). In

1999–2000, oak–hickory stands contained greater foliar

biomass of this species than either alluvial or oak–pine

stands (P ¼ 0.006 and P ¼ 0.040, respectively).

Several individual species or species groups (O.

arboreum, Carya spp., Pinus spp., and Quercus spp.)

exhibited significant interactions between forest type and

sampling interval for foliar Ca content. In 1977–1979,

understory O. arboreum trees in typic cove stands

contributed less Ca than in any other forest type (P ,

0.05 for all types). In 1995–2000, contributions of Ca

from this species were significantly greater in alluvial

stands than in typic coves (P ¼ 0.006), but no other

differences existed among forest types. In 1977–1979, Ca

contributions from Carya spp. were greater in oak–

hickory stands than in any other forest type (P , 0.01

for all types). In 1995–2000, the difference in Ca

contributions was no longer significant between oak–

hickory stands and alluvial stands (P¼ 0.134). In 1977–

1979, alluvial and oak–pine stands received significantly

greater Ca contributions from Pinus spp. than did the

other forest types (P , 0.001 for all types). However, in

1995–2000, alluvial stands no longer received greater

contributions from this species group (P . 0.7 for all

types). In 1977–1979, oak–pine stands received signifi-

cantly greater Ca contributions from Quercus spp. than

typic cove, acid cove, alluvial, and oak–hickory stands

(P , 0.001 for all types). In addition, oak–hickory

stands received greater contributions than typic cove,

acid cove, and alluvial stands (P , 0.001 for all types).

In 1995–2000, oak–pine stand contributions were still

significantly greater than the other four forest types (P

, 0.05 for all types), but differences between oak–

hickory stands and the other forest types were no longer

significant (P . 0.1 for all types).

Changes in relative contributions of understory

and overstory vegetation

Foliar biomass of the understory layer varied by

forest type and generally decreased between the 1977–

1979 and 1995–2000 sampling intervals (Fig. 4). In

1977–1979, the woody understories of oak–pine and

alluvial forest stands contributed 44% and 49% of total

foliar biomass, respectively. However, by 1995–2000,

this contribution declined to 32% for both forest types.

Understory vegetation contributed 33% of foliar bio-

mass in oak–hickory stands in 1977–1979, but only 24%

in 1995–2000. Typic and acid cove stands exhibited

similar decreases in the percent of foliar biomass

contributed by understory vegetation, a decrease from

approximately 25% in both types to 15% and 18%,

respectively. Losses of understory foliar biomass were

offset in alluvial and oak–pine stands by increases in

overstory foliar biomass (Fig. 4). Overstory foliar

biomass increased from 1721 6 318 kg/ha to 2201 6

293 kg/ha (28%; P ¼ 0.007) in alluvial stands and from

1542 6 298 kg/ha to 2460 6 397 kg/ha (60%; P¼ 0.007)

in oak–pine stands (all data: means 6 SE).
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While all forest types exhibited decreases in Ca

contributed by understory vegetation, inputs from the
overstory increased on four forest types (Fig. 5). Foliar

Ca content in oak–pine stands increased from 8.8 6 1.5
kg/ha to 14.4 6 1.5 kg/ha (P¼ 0.004), a 64% increase. In

alluvial stands, inputs of Ca from overstory foliage

increased from 9.6 6 2.3 to 13.2 6 2.4 kg/ha (P¼0.001),
a 36% increase. Calcium inputs from overstory foliage

increased less in typic cove and oak–hickory stands (17%

and 6%, respectively). In typic coves, Ca inputs from
overstory foliage increased from 24.8 6 4.1 to 29.1 6 2.5

kg/ha (P ¼ 0.041). In oak–hickory stands, inputs
increased from 18.5 6 2.3 to 19.6 6 1.2 kg/ha (P ¼
0.033). Foliar Ca inputs from overstory vegetation did

not change significantly in acid cove stands (24.0 6 5.7
kg/ha to 20.0 6 2.3 kg/ha; P ¼ 0.469). Our analyses

revealed no significant interactions between forest type
and sampling interval for understory or overstory foliar

Ca content.

DISCUSSION

Calcium uptake by C. florida and other understory species

In our study, Cornus florida concentrated more Ca in
its foliage on low Ca sites than other common

understory species (Tsuga canadensis, Acer rubrum, or

Rhodendron maximum). The ratio of foliar to gross soil
Ca was remarkably higher on sites with low levels of

available Ca. Kost and Boerner (1985) observed that C.
florida trees accumulated Ca most efficiently on the least

fertile sites, producing 30–35% more leaf mass per unit

Ca in mixed oak vs. mixed mesophytic forests. In a
comparative study of A. saccharum and T. canadensis,

Dijkstra and Smits (2002) found that most Ca cycling
occurs in surface soils, and a relatively small amount of

Ca uptake from deep soil is able to sustain high amounts

of available Ca in the surface soil.
Future stand development could further decrease

available Ca in the forest floor and surface soils.

Exchangeable Ca in the forest floor and surface soil

horizons decreases through time, primarily due to high

rates of Ca incorporation into the woody tissue of

overstory trees (Johnson et al. 1988). Without C. florida

serving as a ‘‘calcium pump’’ for the forest floor, the

effects of Ca locked up for decades into woody tissue are

augmented. In additions to its high rate of Ca uptake, C.

florida litter decomposes more quickly than competing

species. Blair (1988) found that C. florida litter

decomposed more rapidly than both A. rubrum and

Quercus prinus. Because of its higher initial Ca

concentration, efficient production of foliar biomass,

and rapid decomposition, C. florida provided sustained

and regular inputs of Ca into the forest floor prior to

anthracnose infection.

Changes in the contribution of C. florida

to annual calcium cycling

Our results show that the loss of C. florida trees that

resulted from dogwood anthracnose has reduced the

amount of calcium annually cycled through the leaf

litter of understory vegetation. Much of this loss in

alluvial, typic cove, and oak–pine stands may have been

counterbalanced by increased contributions from over-

story foliage (Fig. 5). However, acid cove and oak–

hickory stands, the two forest types that experienced the

greatest loss in annual Ca contributed by understory

foliage, exhibited slight (oak–hickory) or no (acid coves)

increase in overstory foliar Ca inputs to compensate for

understory losses.

The biological significance of net losses in annual Ca

distributed to the forest floor is difficult to assess.

Because we were unable to collect litter samples from

overstory trees, direct comparisons between overstory

and understory foliar Ca must be made with caution.

Foliar Ca concentrations have been shown to vary

within species as a result of age, height, crown class, and

microenvironment (Van Den Driessche 1974). The

concentrations of Ca in our study are similar to those

determined by Day and Monk (1977) in a study

conducted at Coweeta Hydrologic Laboratory (Otto,

FIG. 4. Changes in the relative contribution of understory
and overstory woody vegetation to foliar biomass of five forest
types between 1977–1979 and 1995–2000.

FIG. 5. Changes in foliar calcium of overstory vegetation
from five forest types between 1977–1979 and 1995–2000.
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North Carolina, USA) that included both understory

and overstory trees. In addition, the relative concentra-

tions of foliar Ca across species is nearly identical

between Day and Monk (1977) and our study. However,

given the potential limitation of our Ca concentration

data, we have only made temporal comparisons (1977–

1979 vs. 1995–2000) of relative changes in overstory

foliar Ca and do not present our results as a definitive

quantification of overstory Ca contents of individual

species.

The summed overstory and understory contribution

prior to anthracnose from our study (30 kg/ha) is similar

to those reported for another oak–hickory forest in east

Tennessee, USA (34 kg/ha; Johnson and Todd 1990),

and a mixed-hardwood forest adjacent to Great Smoky

Mountains National Park (GSMNP) (27 kg/ha; Gist

and Crossley 1975) for the same period. If we assume

that our total foliar Ca value is an acceptable

approximation, then the oak–hickory stands we sampled

have sustained a 12% decline in annual foliar Ca

contributions. More striking, prior to anthracnose

across the five forest types, we observed a wide range

in the amount of foliar Ca contributed by C. florida in

individual stands: from 0.2 kg/ha to 27.7 kg/ha. This

suggests that C. florida trees may have created ‘‘hot

spots’’ of Ca within forest stands.

In a study conducted in the southern Appalachians

(USA), Knoepp et al. (2005) found that the initial

concentration of Ca in C. florida after leaf fall declined

18% between 1969–1970 and 1992–1993 sampling

intervals. In addition to Ca, Knoepp et al. (2005) also

observed overall declines in concentrations of phospho-

rus, magnesium, and potassium for C. florida, Q. prinus,

Q. alba, A. rubrum, and Pinus strobus for the same time

intervals. This suggests that the cation concentration of

leaf litter in the southern Appalachians may have

declined, regardless of species. Consequently, our

estimates of foliar Ca contributions in 1977–1979 may

underestimate actual values since we derived our Ca

concentration data from samples gathered in 2001 and

2003.

Contributions of other understory species to foliar

biomass and annual calcium cycling

Within our study area, the relative importance of T.

canadensis in the understory increased over time in all

forest types (Jenkins and White 2002). While the gross

contribution of T. canadensis to annual foliar biomass

and Ca increased in oak–hickory and oak–pine forests,

its relative contributions increased for all forest types.

Most striking was the increase in T. canadensis foliar

biomass in oak–hickory stands, where the contribution

from this species increased from 10% to 26% of total

foliar biomass. In addition, the contribution of hard-

wood trees in oak–hickory stands to foliar biomass

declined from 64% to 48% between sampling intervals.

The forest floor and surface soil under canopies of T.

canadensis have been shown to have lower pH, reduced

exchangeable Ca and Mg, and greater exchangeable Al

and Fe than that which occurs under hardwood

canopies (Finzi et al. 1998). Because T. canadensis

saplings grow more rapidly in low-calcium soils (Kobe

1996), the loss of C. florida from the forest understory

may have contributed to the rapid increase in T.

canadensis dominance. Tsuga canadensis is highly shade

tolerant and the loss of C. florida and subsequent

replacement by T. canadensis has accelerated succession

in these stands. Further, increased soil acidity and

reduced cation availability have been shown to increase

the virulence of dogwood anthracnose (Britton et al.

1996; Holzmueller et al., in press). Consequently,

increased soil acidification and cation leaching resulting

from T. canadensis litter and atmospheric deposition

may have accelerated foliage loss and mortality of C.

florida trees due to anthracnose.

If understory T. canadensis trees are able to persist

and reach the canopy, the amount of exchangeable Ca in

the surface soil in these stands may be drastically

reduced. A model derived by Dijkstra and Smits (2002)

showed that on sites with high total mineral Ca

concentrations, dominance by T. canadensis reduced

exchangeable Ca in the surface soil by ;75% in 150

years. However, with the recent onset of the exotic

hemlock woolly adelgid (Adelges tsugae) in GSMNP, T.

canadensis will likely experience heavy morality (Taylor

2002), further altering species composition and nutrient

cycling within these stands.

Because of the lack of suitable biomass equations, we

did not include foliar biomass or Ca contributions from

R. maximum or Kalmia latifolia in this study. Kalmia

latifolia was not a major understory species in the stands

we sampled, but R. maximum was the second most

dominant understory species in acid coves, second only

to T. canadensis (Jenkins and White 2002). However, the

importance of this species was unchanged between

1977–1979 and 1995–2000 (Jenkins and White 2002).

Consequently, the contributions of R. maximum to

foliar biomass and Ca cycling can likely be viewed as a

constant input between sampling intervals. In addition,

our results show that R. maximum foliage contains a

relatively moderate concentration of Ca (11705 6 362

mg/L) compared to other species we sampled, and

according to Reich et al. (1999) the life span of R.

maximum leaves is 48 months, suggesting that it is less of

a contributor to yearly foliar biomass cycling than most

deciduous species.

Relative contributions of understory

and overstory vegetation

The results of our study show that understory

vegetation is a major contributor to total foliar biomass

in some forest stands. In the 1970s, understory

vegetation in GSMNP contributed up to 49% of total

stand foliar biomass. In three 31–34 yr-old mixed-oak

stands in Korea, Son et al. (2004) found that understory

vegetation contributed only 3–13% of the stands total
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foliar biomass. However, these stands were still in the

stem-exclusion stage of stand development (Oliver and

Larson 1996) and other studies have shown that total

foliage biomass increases with stand age (Long and

Turner 1975, Santa Regina et al. 2001). Across all forest

types in this study, foliar biomass contributed by

understory vegetation decreased between sampling

intervals. The plots we sampled in this study were in

areas that were subjected to logging, broadcast burning,

and livestock grazing prior to the creation of GSMNP

(Pyle 1988). Due to ongoing stand development,

canopies on these plots likely have become more closed

since the 1970s, resulting in reduced understory density

and biomass. The contribution of the overstory to foliar

biomass and calcium content has increased as a result of

crown expansion and canopy closure.

As stands reach the understory reinitiation stage of

development, the woody understory will become more

developed (Oliver and Larson 1996) and may make a

larger contribution to total foliar biomass and Ca

content. As canopy trees begin to decline and die, the

contribution of the overstory to foliar biomass and

calcium content may decrease. Because the woody-

species compositions of the overstory and understory

layers are often very different, the contribution of Ca per

unit mass from the two layers may differ. For example,

throughout much of the Midwestern United States the

understories of oak stands are dominated by Acer

saccharum (Pallardy et al. 1988, Jenkins and Parker

1998), a species whose litter is typically much richer in

calcium than oaks (Table 1).

Ecological impacts and management implications

Our results suggest that oak–hickory forests are the

most likely of the five forest types to have been affected

by decreased cycling of Ca resulting from the loss of C.

florida and the drastic increase in the understory

importance of T. canadensis. This forest type experi-

enced a 42% decline in the amount of Ca cycled by

understory woody vegetation; a loss that was not

completely offset by increased overstory contributions.

In the eastern United States, oak–hickory forest

comprises 34% of the total forest area (53 3 106 ha;

Smith et al. 2001). In GSMNP, oak–hickory forest

covers ;64 600 ha (31% of the Park’s total forest cover;

Madden et al. 2004). The geographic range of C. florida

encompasses most of the area covered by oak–hickory

forest in eastern North America. Whether other forests

in the East have experienced changes in Ca cycling due

to dogwood anthracnose is unknown. Differences in

understory species composition and variations in parent

material fertility could influence Ca cycling. For

example, sites where hardwood species such as A.

saccharum have replaced C. florida in the understory

will exhibit less change in intra-stand Ca cycling than

southern Appalachian sites where C. florida was

replaced by T. canadensis.

The loss of Ca from the forest floor and surface soil of

eastern forests may have cascading effects on a range of

biota. Studies have shown that the density of snails and

millipedes is strongly correlated with the local availabil-

ity of Ca (Gist and Crossley 1975, Hotopp 2002).

Reductions in forest-floor Ca caused by acid deposition

results in lower densities of snails, which in turn causes

decreased reproduction by passerine birds that depend

upon Ca in snail shells for eggshell production (Grave-

land et al. 1994). Within the southern Appalachians,

GSMNP serves as a substantial population source for

Wood Thrush and other songbirds (Wilcove 1988,

Simons et al. 2000). The loss of Ca from the forest

floors of hardwood stands, combined with impacts of

acid deposition at higher elevations (Hames et al. 2002),

could have long-term negative impacts on songbird

populations throughout the region.

Because of the ecological importance of C. florida,

active management should be used to prevent the loss of

this species from eastern forests. While techniques exist

for controlling anthracnose in horticultural settings,

techniques for controlling the disease across large areas

of continuous forests have proved elusive. Britton et al.

(1994) found clearcut harvesting reduced the severity of

dogwood anthracnose in post-harvest stands. However,

creating large clearcuts to benefit a single understory

species would be inappropriate and impractical for most

ecosystem management plans and is not a management

option on parkland such as GSMNP. Recent work in

GSMNP has shown that past burning has reduced the

impacts of dogwood anthracnose by creating more open

stand conditions that reduce the virulence of the fungus

(Holzmueller 2006), suggesting that prescribed fire may

offer the best option to prevent the loss of C. florida

from oak–hickory and oak–pine forests. Based upon our

research, preventing the loss of C. florida may be

important to maintaining the long-term health of

eastern forests.
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APPENDIX A

Allometric equations used to determine foliar biomass of 35 woody species across five forest types. (Ecological Archives A017-
032-A1)

APPENDIX B

Tables reporting changes in foliar biomass and calcium content of selected understory species and summed totals of all
understory species across five forest types. (Ecological Archives A017-032-A2)
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