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    2.1    Introduction 

 Vegetation classifi cation has been an active fi eld of scientifi c research since well 
before the origin of the word ecology and has remained so through to the present 
day. As with any fi eld active for such a long period, the conceptual underpinnings 
as well as the methods employed, the products generated and the applications 
expected have evolved considerably. Our goal in this chapter is to provide an 
introductory guide to participation in the modern vegetation classifi cation enter-
prise, as well as suggestions on how to use and interpret modern vegetation 
classifi cations. Some notes on the historical development of classifi cation and 
the associated evolution of community concepts are provided by van der Maarel 
 &  Franklin in Chapter  1 , and Austin describes numerical methods for commu-
nity analysis in Chapter  3 . While we present some historical and conceptual 
context, our goal in this chapter is to help the reader learn how to create, inter-
pret and use modern vegetation classifi cations, particularly those based on large -
 scale surveys. 

   2.1.1    Why  c lassify? 

 Early vegetation classifi cation efforts were driven largely by a desire to under-
stand the natural diversity of vegetation and the factors that create and sustain 
it. Vegetation classifi cation is critical to basic scientifi c research as a tool for 
organizing and interpreting information and placing that information in context. 
To conduct or publish ecological research without reference to the type of com-
munity the work was conducted in is very much like depositing a specimen in 
a museum without providing a label. Documenting ecological context can range 
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from a simple determination of the local community to a detailed map showing 
a complicated spatial arrangement of vegetation types as mapping units. This 
need for documenting ecological context is also scale transgressive with vegeta-
tion classifi cation schemes contributing equally to research from small popula-
tions of rare species to that involving global projection of human impacts 
(Jennings  et al.   2009 ). Frameworks other than vegetation classifi cation are con-
ceivable for documenting ecological context. For example, environmental gra-
dients and soil classifi cations have often been used to defi ne site conditions. 
However, these require  a priori  knowledge of factors important at a site while 
vegetation classifi cation, in contrast, lets the assemblage of species and their 
importance serve as a bioassay. 

 Use of vegetation classifi cation has increased over the past few decades. Vege-
tation description and classifi cation provides units critical for inventory and 
monitoring of natural communities, planning and managing conservation pro-
grammes, documenting the requirements of individual species, monitoring the 
use of natural resources such as forest and range lands, and providing targets 
for restoration. Vegetation types are even achieving legal status where they are 
used to defi ne endangered habitats and where their protection is mandated (see 
Waterton  2002 ). For example, the European Union has created lists of protected 
vegetation types, and vegetation types are being used to develop global red lists 
of threatened ecosystems (e.g. Rodr í guez  et al.   2011 ).  

   2.1.2    The  c hallenge 

 The goal of vegetation classifi cation is to identify, describe and interrelate rela-
tively discrete, homogeneous and recurrent assemblages of co - occurring plant 
species. Vegetation presents special challenges to classifi cation as it varies more 
or less continuously along environmental gradients and exhibits patterns that 
result from historical contingencies and chance events (Gleason  1926, 1939 ). 
Not surprisingly, multiple solutions are possible and as Mucina  (1997)  and Ewald 
 (2003)  have explained, adopting one approach over another should be based on 
practical considerations. 

 Although there is considerable variability in approaches taken to vegetation 
classifi cation, most initiatives embrace some basic assumptions about vegetation 
and its classifi cation. Four such widely adopted assumptions were articulated by 
Mueller - Dombois  &  Ellenberg in their classic 1974 textbook.

   1     Similar combinations of species recur from stand to stand under similar 
habitat conditions, though similarity declines with geographic distance.  

  2     No two stands (or sampling units) are exactly alike, owing to chance events 
of dispersal, disturbance, extinction, and history.  

  3     Species assemblages change more or less continuously if one samples a geo-
graphically widespread community throughout its range.  

  4     Stand similarity varies with the spatial and temporal scale of analysis.    

 These underlying assumptions have led to the wide adoption of a practical 
approach wherein community types are characterized by attributes of vegetation 
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records that document similar plant composition and physiognomy with the 
vegetation classifi cation relying on representative fi eld records (plots) to defi ne 
the central concept of the type. Subsequent observations of vegetation are deter-
mined as belonging to a unit through their similarity to the type records for the 
individual communities. 

 Another challenge that increasingly confronts the vegetation classifi cation 
enterprise is that with the widespread adoption of classifi cation systems for 
inventory, monitoring, management and even legal status, classifi cation systems 
need to have comprehensive coverage, stability in the classifi cation units and a 
transparent process for revising those units. This new and broader set of applica-
tions suggests that we need to move toward consensus classifi cations that combine 
the inquiry of many persons into a unifi ed whole, and that the rules for partici-
pation be open and well defi ned. However, we must also recognize that as the 
applications of vegetation classifi cation migrate from the pure scientifi c arena 
to one of management and policy, the categories are likely to evolve in ways 
that fi nd their origin not just in science but also in policy and public opinion 
(Waterton  2002 ).   

   2.2    Classifi cation  f rameworks:  h istory and  f unction 

 Vegetation classifi cations systems can vary from local to global and from fi ne -
 scale to coarse - scale, and the approaches to vegetation classifi cation used tend 
to refl ect the scale of the initiative. Classifi cation schemes used at the global 
scale tend to focus on growth - forms or physiognomic types that refl ect broad -
 scale climatic variation rather than species composition (discussed by Box  &  
Fujiwara in Chapter  15 ). In the present chapter our focus is on actual or realized 
natural and semi - natural vegetation. These are generally bottom - up classifi ca-
tions where units are defi ned by sets of fi eld observations where species occur-
rences and/or abundances were recorded. Vegetation classifi cation has a rich 
history (discussed in Chapter  1 ) with the many and varied approaches reviewed 
in detail by Whittaker  (1962, 1973) , Shimwell  (1971)  and Mueller - Dombois  &  
Ellenberg  (1974) . Subsequent synthetic overviews by Kent  (2012) , McCune  &  
Grace  (2002) , and Wildi  (2010)  summarize, compare and evaluate commonly 
used methods. 

 Although local - scale projects can use any classifi cation criteria that provide a 
convenient conceptual framework for the project at hand, such local and idiosyn-
cratic classifi cations do not allow the work to be readily placed in a larger 
context. The growing recognition of the need for vegetation classifi cation 
research to place new results in context means that a consistent conceptual 
framework is needed for all components of the classifi cation process (De C á ceres 
 &  Wiser  2012 ). Below we summarize key components of two such frameworks: 
European phytosociology as it has evolved from the school of Braun - Blanquet, 
and the more recently developed US National Vegetation Classifi cation. We then 
summarize the differences and compare these classifi cations to those encoun-
tered in other national - level initiatives. 
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   2.2.1    The  B raun -  B lanquet  a pproach and  c ontemporary 
 E uropean  p hytosociology 
 By far the most widely applied approach to vegetation classifi cation is that devel-
oped by Josias Braun - Blanquet. The method centres on recording fi ne - scale veg-
etation composition. The basic unit of observation is the plot (or relev é ) within 
which all species are recorded by vertical stratum and the abundance of each is 
estimated, usually using an index of cover/abundance. Related plots are combined 
in tabular form and groups of similar plots are defi ned as communities based on 
consistency of composition. The basic unit, adopted at the International Botanical 
Congress in 1910, is the association, which is defi ned as having  ‘ defi nite fl oristic 
composition, presenting a uniform physiognomy, and growing in uniform habitat 
conditions. ’  The community is then characterized by the constancy of shared taxa 
and specifi c diagnostic species that provide coherency to the group and set it off 
from other groups. Historically, table sorting was done by hand, while today 
computer - aided sorting is the rule with numerous algorithms available to auto-
mate the process (see Section  2.6.1  for more detail, or consult Braun - Blanquet 
 1964  or Westhoff  &  van der Maarel  1973 ). Similar associations that share par-
ticular diagnostic species are combined into higher - level assemblages, there being 
fi ve primary levels (Association, Alliance, Order, Class and Formation). 

 Once an author has developed one or more new or revised associations, that 
author reviews past published work, designates the critical diagnostic species, 
assigns a unique name following the International Code of Phytosociological 
Nomenclature (Weber  et al.   2000 ), places it within the hierarchy and submits 
the work for publication. The process is similar to that required to establish a 
new species. In both cases the author examines documented occurrences, writes 
a monograph wherein the examined occurrences are typically reported, and 
specifi es plots or a type specimen that serve to defi ne the type. In the Braun -
 Blanquet system one plot is designated the nomenclatural type for each associa-
tion, the nomenclature follows a formal code that gives priority to the fi rst use 
of a name, and the resultant associations are then available in the literature for 
scientists to discover and accept or not. 

 The strongest attributes of the Braun - Blanquet system are the consistency of 
the approach, the enormous number of plots that have been recorded (with an 
estimated total for Europe alone of 4.3 million; Schamin é e  et al.   2009 ), and the 
large number of published descriptions of vegetation types. Weaknesses include 
a seeming arbitrary defi nition of units, the lack of requirement that new units 
be integrated with established units, and the lack of any formal registry of pub-
lished units. Some potential users fi nd the naming system awkward, which 
is why the recent vegetation classifi cation of Great Britain divorced itself from 
the traditional nomenclature, despite the fundamental units otherwise closely 
approximating the associations of the Braun - Blanquet system (Waterton  2002 ; 
Rodwell  2006 ). 

 The literature on European vegetation is so enormous that summarizing it has 
proven extremely diffi cult. Community types have been synthesized for quite a 
few countries and other geographic units, but these efforts have not yet been 
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integrated. In 1992 The European Vegetation Survey was established with the 
goal of fostering collaboration and synthesis (Mucina  et al.   1993 ; Rodwell  et al.  
 1995 ). One direct result has been a number of trans - national overviews of the-
matic types and a summary of types at the alliance level and above by Rodwell 
 et al.   (2002) . In addition, there has been movement toward standards for col-
lecting plot data (Mucina  et al.   2000 ), and the development of the software 
program TurboVeg (Hennekens  &  Schamin é e  2001 ) for managing plot data has 
led to considerable standardization in data content and format.  

   2.2.2    The  U nited  S tates  N ational  V egetation  C lassifi cation 

 The development of the US National Vegetation Classifi cation (USNVC) pro-
vides clear contrasts with the European classifi cation enterprise, although both 
have roughly equivalent primary units (in both cases called associations), and 
both are based on vegetation plot records. Historically, when vegetation classi-
fi cation was undertaken in North America by academic ecologists, the approaches 
tended to be idiosyncratic and specifi c to the particular project. In the absence 
of leadership from the academic community, various federal land management 
and environmental regulatory agencies in the USA created classifi cation systems 
for their own purposes, such as for wetlands (Cowardin  et al.   1979 ), land - cover 
(Bailey  1976 ), and forest management (Pfi ster  &  Arno  1980 ). 

 Vegetation classifi cation in the USA has matured considerably over the past 
few decades in response to three initiatives. First, starting in the 1970s, The 
Nature Conservancy, a non - profi t organization, encouraged the development of 
state programmes to inventory the status of biodiversity for conservation plan-
ning. The lack of consistency in inventory units between states ultimately led to 
a national vegetation classifi cation system based on types provided by state pro-
grammes, published literature and expert opinion (Anderson  et al.   1998 ). 
Although at fi rst largely subjective, the units were defi ned to be non - overlapping 
and to constitute a formal list of recognized types. This effort grew into an 
international classifi cation (see Grossman  et al .  1998 ; Anderson  et al .  1998 ; 
Jennings  et al.   2009 ). As this system has matured, emphasis has been placed on 
both providing linkage to original data and describing the variation in each type 
across its geographic range. Second, growing recognition of the need for common 
standards for geospatial data across government agencies led to the establishment 
of the US Federal Geographic Data Committee (USFGDC), including a subcom-
mittee for standardizing vegetation classifi cation activities across government 
agencies. Although this standard is formally recognized only for cross - tabulating 
classifi cations, it is beginning to have broad application in its own right. Third, 
members of the Ecological Society of America (ESA) recognized the diversity of 
approaches and standards in use across the country, the need to allow broad 
participation by interested parties and the importance of peer review of proposed 
changes in the classifi cation. ESA established a Panel on Vegetation Classifi ca-
tion in 1994 that subsequently proposed standards for vegetation classifi cation 
(Jennings  et al.   2009 ). 

 These three independent initiatives formed a formal partnership to advance 
the USNVC that led to adoption of a new USFGDC standard in 2008, including 
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rules for documentation and peer review of proposed new and revised types. As 
a consequence of this partnership, the USA has a national classifi cation with a 
defi nitive set of associations ( c.  6200 at this writing), and mechanisms for modi-
fi cation of this list by interested parties are being developed. By requiring that 
accepted types span the known range of variation, that they not overlap, and 
that they be based on vegetation records in public archives, the system is more 
forward looking than current European initiatives. However, at this time the US 
community types have only limited linkage to archived data, and the formal 
descriptions of types are not always suffi ciently detailed to allow creation of 
keys or expert systems for determination of vegetation occurrences. Thus, while 
the US infrastructure is very progressive, the content will require considerably 
more development to catch up with the established European initiatives. 

 The USNVC formal hierarchy differs from that of the Braun - Blanquet system 
in that it is not derived entirely from lumping smaller units into larger ones. 
Instead it has three upper levels that provide a top - down, physiognomic hierar-
chy with units that are global in conception (Formation Class, Formation Sub-
class and Formation). Nested below these are three middle levels based on 
biogeographic and regional environmental factors (Division, Macrogroup and 
Group). At the base are Associations, which are combined into Alliances that 
nest into the middle - level Groups. This three - tier, eight - level hierarchy is intended 
to provide interpretable and widely applicable units across all spatial scales. The 
nesting is not always as seamless as it is in the Braun - Blanquet approach, but is 
intended to facilitate a broader range of applications.  

   2.2.3    Attributes of  s uccessful  c lassifi cation  s ystems 

 The recent British National Vegetation Classifi cation (NVC) programme is a 
model for standardized data collection in a vegetation classifi cation system. This 
programme was led by John Rodwell who described the methodology in a user ’ s 
handbook (Rodwell  2006 ). There are standard rules for placement of plots, size 
of plots and data to be collected. Standard forms were used to minimize drift in 
fi eld methods. Any large new initiative would be well advised to adopt the level 
of standardization employed in the UK NVC, and small programmes should 
adopt methods and goals consistent with well - established programmes in order 
to maximize compatibility. The Braun - Blanquet, British and US initiatives all 
have their own standard nomenclatures, although the formats and rules vary 
considerably between the systems. Finally, the US system remains unique in 
requiring public archiving of supporting plot data and providing systems for 
interested stakeholders to formally propose changes, both of which are likely to 
lead to more rigorously defi ned types.   

   2.3    Components of  v egetation  c lassifi cation 

 There are ten primary components to vegetation classifi cation, their complexity 
depending on the situation, but all of them being important. We defi ne those 
components here, and starting in Section  2.4  we address each in some detail. 
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  Project planning.  Delimiting the geographic and ecological extent or range of 
the study allows data needs to be defi ned and existing data to be identifi ed and 
evaluated. Often this will involve extensive preliminary work to aid in the selec-
tion of fi eld sites, perhaps through stratifi cation relative to composition or 
environment or successional development, or in more human - dominated systems 
through locating the remaining examples of natural and semi - natural 
vegetation. 

  Data acquisition . Once the objective of the study is defi ned, quantitative data 
characterizing vegetation composition must be acquired as new records or from 
databases of previously collected vegetation records. At a minimum, each record 
should contain the date and location of observation, some attributes of the site, 
a list of plant taxa and some measure of importance for each taxon. 

  Data preparation.  Before the vegetation composition data can be analysed, the 
observation records need to be combined into a single data set wherein incon-
sistences in fi eld methods, scales of observation, measures of abundance, units 
of environment, resolution of species identifi cations and inconsistent taxonomic 
authorities have all been resolved. Although the goal is straight forward, com-
plete integration without loss of information is often impossible and this com-
ponent often involves a number of diffi cult and subjective decisions. 

  Community entitation.  This is the most essential step in classifi cation as it is the 
creation of the entities that constitute the classifi cation units. A broad range of 
methods can be employed, often iteratively and in combination, to defi ne the 
classifi cation units or  ‘ types ’ . As vegetation often varies continuously in time and 
space, there is nothing conceptually as solid as a species and different investiga-
tors following different rules and protocols often come up with different clas-
sifi cation units. 

  Cluster assessment.  Once entities have been defi ned, it is important to critically 
analyse the results to determine that the types are relatively homogeneous and 
distinct from other types (Lep š   &   Š milauer  2003 ), and to assure that distribu-
tions of species within types exhibit high fi delity and ecologically interpretable 
patterns. The criteria often involve formal assessment of the quantitative similar-
ity (or dissimilarity) of vegetation composition within versus between types and 
the calculation of quantitative indices of species fi delity to types. 

  Community characterization.  Entities must be characterized in a way that allows 
additional occurrences to be recognized with less than a full - scale reanalysis, and 
also allows placement in a larger system of community types. Traditionally, this 
has included assessment of the typical abundance and frequency of taxa, and in 
many cases identifi cation of indicator species and the typical range of environ-
mental conditions. 

  Community determination.  Users need to be able to determine to which classi-
fi cation unit an instance of vegetation should be assigned, be it a published or 
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archived record of vegetation or a new fi eld observation. Tools range from 
dichotomous keys, to methods that use mathematical similarity, to expert systems. 
Determinations range from binary (yes/no), to assignment to multiple types with 
various designated degrees of fi t. 

  Classifi cation integration.  Vegetation classifi cation is often intended to expand 
or revise an established vegetation classifi cation system. Often this involves 
changes in established units, or replacement of previously published units. This, 
in turn, requires that levels of resolution (e.g. fi neness of splitting), criteria for 
peer review and the importance of stability in classifi cation systems be addressed 
systematically, more so than has historically been the case. For effective com-
munication, community types need names, and the names need to be compliant 
with the current standards of the classifi cation system (e.g. Weber  et al .  2000 ; 
USFGDC  2008 ). 

  Classifi cation documentation.  The results of vegetation classifi cation initiatives 
need to be documented, both as to the units recognized and the data analysed. 
Different classifi cation systems have different requirements, formats and pro-
tocols. Publication with tables summarizing composition is always important, 
and vegetation records used in the analysis should be deposited in a public 
database.  

   2.4    Project  p lanning and  d ata  a cquisition 

 The fundamental unit for recording vegetation is the plot (or relev é ). Associated 
with the plot are records of its location, size, physical setting and vegetation 
composition. The distribution and placement of plots, their size and shape, and 
the attributes to be recorded vary among recognized protocols and are important 
decisions to make when initiating a new project, or to recognize when using 
existing plot data. 

   2.4.1    Plot  d istribution and  l ocation 

 The fi rst step in a vegetation classifi cation project is to defi ne the geographic and 
compositional variation in vegetation to be classifi ed as this will determine the 
number of plots needed and the diffi culty of acquiring them. This step can be 
accomplished by literature review, consulting with regional experts and prelimi-
nary fi eld reconnaissance. Next, existing relevant vegetation plot data should be 
identifi ed. This is not always straightforward for while some plot data are avail-
able in public archives (e.g. VegBank; see  www.vegbank.org , Peet  et al .  2012 ) 
and many data sets are described in indices of plot databases (e.g. Global Index 
of Vegetation - Plot Databases (GIVD); see  www.givd.info , Dengler  et al.   2011 ), 
many other data sets are not widely known and must be discovered by contact-
ing likely sources. Once the availability of extant plot data is assessed and the 
need for new plots has been ascertained, the next step is to estimate the effort 
required to obtain those new plots. 
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 The physical distribution of plots across the study area can be determined in 
a number of ways and these will refl ect the objectives of the project. Tradition-
ally, plots have been placed using preferential sampling where the investigator 
subjectively locates them to cover the range of variation needed for the project. 
The potential for bias in this method is obvious, so sometimes fi eld plots are 
randomly located, or the landscape is stratifi ed and plots are placed randomly 
within the strata. An alternative form of stratifi cation often employed is the 
gradsect method where vegetation samples are stratifi ed along known gradients 
of compositional variation (see Gillison  &  Brewer  1985 ; Austin  &  Heyligers 
 1989, 1992 ). As random and stratifi ed sampling might undersample rare or 
unknown types, it is not uncommon for a probability designed sample to be 
supplemented with preferential plots on types poorly represented in the sample. 
Also, as the spatial extent of the project increases, the need for both stratifi cation 
and some component of preferential sampling increases. For example, if sam-
pling the range of variation in riparian vegetation across a moderate - sized Euro-
pean country or American state, there would inevitably be preferential selection 
of regions within which the sampling would occur. In contrast, if the objective 
of the project were an inventory of the area of each vegetation type, or of stand-
ing timber, objective sampling methods would be more critical. An example of 
this is the Forest Inventory and Analysis plot system of the United States Forest 
Service designed to monitor the timber supply of the nation. This system uses a 
base grid of sample points with one plot located randomly in each of the 125,100 
2430 - ha hexagonal cells (Bechtold  &  Patterson  2004 ; Gray  et al.   2012 ). 

 The potential for bias in preferentially located plots has led to considerable 
introspection and some critical analysis. Preferential sampling is often favoured 
in human - manipulated landscapes where patches of natural and semi - natural 
vegetation tend to be small and infl uenced by recent land use. Role č ek  et al.  
 (2007)  explain that while probability designed sampling schemes better meet 
certain statistical assumptions, preferential sampling yields data sets that cover 
a broader range of vegetation variability including rare types that might other-
wise have been missed. Random sampling is required when the sample units 
must represent a single statistical population. In vegetation sampling generally 
the intention is to distinguish types that are not necessarily members of the same 
statistical population. 

 Michalcov á   et al.   (2011)  further considered the problems inherent in using 
large plot databases wherein many of the plots are likely to represent preferential 
sampling. They found that sets of preferential samples contained more endan-
gered species and had higher beta diversity, whereas estimates of alpha diversity 
and representation of alien species were not consistently different between pref-
erentially and stratifi ed - randomly sampled data. Thus, if the goal is to character-
ize the range of compositional variation or maximize species coverage, then at 
least some element of preferential sampling can be important.  

   2.4.2    Plot  s ize and  s hape 

 Choice of plot size and shape can signifi cantly infl uence perception of vegetation 
for a number of reasons. First, vegetation is spatially variable at nearly all scales. 
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This variation can be driven by underlying environmental variation, biological 
interactions, or historical events (Nekola  &  White  1999 ). Secondly, species 
number increases with plot size, the logarithm of species richness usually varying 
directly with the logarithm of plot area (Fridley  et al.   2005 ). Plot shape has a 
similar trade - off in that plots with low perimeter to area ratios (squares and 
circles) tend to minimize spatial pattern (within - plot heterogeneity) and thus 
species number, whereas plots with high edge - area ratios (e.g. long, thin plots) 
maximize representation of the range of patch types and species. 

 Historically, the solution to the trade - off between homogeneity and complete-
ness was to create a species – area curve to assess the  ‘ minimum area ’  needed to 
represent a particular type of vegetation. Unfortunately there is no objective 
stopping rule for plot area. In addition, plots were generally located preferen-
tially in homogenous vegetation, but again this was subjective as some pattern 
can nearly always be found within a plot. Plot size also traditionally varied with 
vegetation height so as to capture a snapshot of the total community, and Dengler 
 et al.   (2008)  observe that as a rule of thumb, plots are roughly as large in square 
metres as vegetation is high in decimetres. 

 In excess of four million vegetation plots are available in various archives (see 
Schamin é e  et al.   2009 ; Dengler  et al.   2011 ). Integrating subsets of these plots 
for various analyses is complicated by the diversity of plot sizes and shapes. In 
addition, metrics such as species constancy and plot similarity can vary with plot 
size (Dengler  et al.   2009 ). Collectively, these considerations have led a series of 
authors to propose that a standard set of plot sizes be adopted to facilitate future 
data integration and analysis. For example, Chytr ý   &  Ot ý pkov á   (2003)  proposed 
plot sizes of 4   m 2  for sampling aquatic vegetation and low - grown herbaceous 
vegetation, 16   m 2  for grassland, heathland and other herbaceous or low - scrub 
vegetation types, 50   m 2  for scrub, and 200   m 2  for woodlands. In contrast, many 
North American ecologists have followed a tradition established by Whittaker 
 (1960)  of recording forest vegetation in 1000   m 2  plots, refl ecting the generally 
higher tree species richness of North American forests as compared to European 
forests. 

 Peet  et al.   (1998)  proposed that because there is no one correct scale for 
observing vegetation and because different factors infl uence composition at dif-
ferent scales, vegetation should be recorded at multiple scales, both to facilitate 
data integration across projects and to allow investigation of processes working 
at different scales. They proposed a specifi c protocol with plots on a nearly 
log scale of 0.01, 0.1, 1, 10, 100, 400 and 1000   m 2 . For their study they sug-
gested 100   m 2  as the smallest acceptable total plot size, calling smaller - scale 
pattern  ‘ within - community variation ’ . Such nested designs largely originated 
with Whittaker  et al.   (1979) , with alternative protocols subsequently proposed 
(e.g. Stohlgren  et al.   1995 ; Dengler  2009 ). All these protocols note increased 
variance in composition among subsamples at smaller scales and recommend 
that there be multiple small plots within each large plot to increase the range of 
this variance documented. Although there is no consensus as to the optimal size 
or arrangement of nested plots, some form of nested sampling is highly desirable, 
if for no other reason than to maximize the potential for aggregating the plots 
with those from other studies. Moreover, with careful plot design, relatively little 
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extra effort is required to include nested plots within the largest plot. Users of 
nested protocols should, however, be cautious not to aggregate dispersed sub-
plots into larger subsamples as this will infl ate species numbers owing to the 
subplots spanning an artifi cially high range of within - community variation.  

   2.4.3    Plot  r ecords 

 In its simplest form, a plot record contains information about the observation 
event, the site and the plants observed at the site. Lists of required and recom-
mended plot attributes have been codifi ed for numerous plot protocols and with 
remarkably similar prescriptions (e.g. Mucina  et al.   2000 ; Rodwell  2006 ; 
Jennings  et al.   2009 ). These prescriptions often recognize two kinds of plots; 
occurrence plots are those used to determine the vegetation type at a site or 
document its presence, whereas classifi cation plots are those intended for devel-
opment or improvement of a classifi cation. Occurrence plots require only a 
subset of the observations required of a classifi cation plot, reducing the time 
needed for data collection. 

 Information about the observation of the plot that describes the event  –  such 
as the date, the persons involved, the geo - coordinates (including the datum and 
the precision of the record), the unique identifi er of the observation  –  and the 
physical layout of the plot should be recorded as metadata. If the plot is observed 
more than once, it is important to separate data that are constant between meas-
urements, such as geo - coordinates, from information particular to the observa-
tion event, such as date. A text description of the location is encouraged. The 
second group of observations contains facts about the site and its overall vegeta-
tion. Basic topographic information such as slope, aspect and elevation are nearly 
always collected. Most other environmental data are diffi cult to standardize, so 
these are usually tailored to the project or its larger context. For example, soil 
chemistry data can be very helpful for interpreting plots in a project, but results 
can vary greatly with protocol, and even between labs using a consistent proto-
col; consequently, combining soils data from plots collected in separate projects 
must be done with caution. Finally, summary records about the physical structure 
of the vegetation are often required, such as height and cover in different vertical 
strata. These seemingly simple measurements also vary signifi cantly with proto-
col, so care must be taken to retain consistency in data collection across a project 
and when integrating data from multiple projects. 

 Taxon identifi cation and documentation present several challenges. Inevitably 
some taxa observed in the fi eld will be unknown. As multiple taxa are often 
unknown, it is best to link a collection to a specifi c line number on the fi eld data 
page so that future ambiguities are minimized. The taxon list should have each 
taxon recorded to the highest resolution possible, be it variety or family. Recog-
nition of infraspecifi c types can prove invaluable during future data integration 
as varieties and subspecies often migrate to full species status, and future splitting 
would not be possible without special information being recorded, such as 
variety or subspecies name. Care should be taken to follow standard authorities 
for the taxa recognized and to record that authority (as opposed to the authority 
for creation of the name) so that in the future the meaning of the name can be 
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evaluated. This step is necessary because the meaning of a taxonomic name can 
vary among treatments, and a taxon can have different names in different treat-
ments owing to multiple, contrasting circumscriptions (see Franz  et al.   2008 ; 
Jansen  &  Dengler  2010 ). 

 Each species in a plot is typically assigned a cover class value, and in many 
cases a cover class value is assigned specifi c to each stratum in which it occurs. 
Cover is the percentage of the earth surface covered by a vertical projection of 
the leaves, though typically small holes within a single individual ’ s crown are 
ignored. Cover class is an ordinal variable, typically with 5 – 10 possible values. 
Numerous scales have been proposed (summarized in van der Maarel  1979 , 
Dengler  et al.   2008  and Jennings  et al.   2009 ; see also Table  2.1 ). The most 
frequently employed cover index is the 1 – 5 scale of Braun - Blanquet  (1928)  or 
some variant of it. Almost as common are variants of the 1 – 10 Domin scale 
 (1928) , such as that of Krajina  (1933) , the UK National Vegetation Classifi cation 
(Rodwell  2006 ), the New Zealand Survey (Allen  1992 ) and the Carolina Vegeta-
tion Survey (Peet  et al.   1998 ). In selecting a cover scale, there are three important 
guidelines. First, it should be approximately logarithmic until at least 50% cover. 
This is because the human mind perceives cover in roughly a logarithmic way; 
we can perceive the difference between 1 and 2%, but not 51 and 52%, as the 
fi rst pair represents a doubling while the second is a small relative increase. 
Second, the index should be replicable between observers to the level that almost 

  Table 2.1    A comparison of several cover scales used for recording vegetation plots 
including the traditional Braun - Blanquet scale  (1928) , the original Domin scale  (1928) , 
a variant of the Domin scale by Krajina  (1933) , and the scales of the Carolina (Peet 
 et al.   1998 ) and New Zealand vegetation surveys (Allen  1992 ). The shading indicates 
how the newer indices nest into the Braun - Blanquet scheme. 

   

Range of cover Braun-Blanquet Domin Krajina Carolina New Zealand

Single individual r + + 1 1
Sporadic or few + 1 1 1 1

0–1% 1 2 1 2 1
1–2% 1 3 1 3 2
2–3% 1 3 1 4 2
3–5% 1 4 1 4 2

5–10% 2 4 4 5 3
10–25% 2 5 5 6 3

25–33% 3 6 6 7 4
33–50% 3 7 7 7 4

50–75% 4 8 8 8 5

75–90% 5 9 9 9 6
90–95% 5 10 9 9 6
95–100% 5 10 10 10 6
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always two observers will be within one value of each other. Third, it is highly 
desirable that the scale can be directly mapped onto the numeric units of the 
Braun - Blanquet scale to assure that data sets from diverse times and places can 
be integrated for at least some purposes.     

   2.5    Data  p reparation and  i ntegration 

 Once plot data have been collected, either in the fi eld or from plot archives, it 
is necessary to integrate and standardize the data for analysis. This requires that 
inconsistencies in plot method, size and taxonomy be addressed in a consistent 
and well - reasoned manner, with each step recorded for archiving with the data-
base when the project is completed. 

   2.5.1    Taxonomic  i ntegration 

 Construction of a taxonomically homogeneous data set can be challenging and 
typically requires investigator judgments on numerous inconsistencies. Because 
taxonomic adjustments will differ in their implications for data analysis, research-
ers should typically develop two data sets, one designed to address questions of 
species richness (species richness data set) and one designed to address questions 
where between - plot similarity must be assessed (analysis data set). In the species 
richness data set, all entities recorded as different species in a plot should be 
retained as distinct, regardless of the taxonomic resolution. In the analysis data 
set there should be a standard set of taxa used across all plots, and where taxa 
are inconsistently resolved they should usually be lumped together. If a small 
percentage of occurrences are reported only to the genus level, these taxon 
occurrences should be discarded from the analysis data set; if most occurrences 
are unknown one should lump them to the genus. Taxa not resolved to at least 
the genus level should be dropped from the analysis data set as such groups 
usually have little commonality in traits or distribution. If many taxa in a plot 
are not known to the species level, the plot should be dropped from the 
data set. The trickiest cases are where many observations are known to species 
and still a signifi cant number are known only to genus. What if in a data set 
70% of  Carex  occurrences are known to species and they span 20 taxa? Perhaps 
the numerous occurrences of  Carex  species should be dropped because they 
contain much less information than those identifi ed to species, but the price is 
that there are missing records of shared taxa. Moreover, if one data source 
were consistently of lower resolution, there would be a signal attributable to a 
specifi c study. 

 Integrating taxon occurrences across data sets of mixed provenance presents 
greater uncertainty as to synonymy than does a single survey. Even when two 
occurrences are unambiguously assigned the same taxonomic name, it is still 
necessary to verify that the taxonomic concepts are equivalent. This is because 
one taxonomic name can have many meanings in terms of specifi c sets of 
specimens, and a certain set of specimens could have many different names 
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(Berendsohn  et al.   2003 ; Jansen  &  Dengler  2010 ). Franz  et al.   (2008)  describe 
the situation with the grass known as  Andropogon virginicus  in the  Flora of the 
Carolinas  (Radford  et al.   1968 ), which when examined across eight taxonomic 
treatments reveals nine distinct sets of specimens variously arranged into 17 
taxonomic concepts (combinations of the nine sets of specimens) and labelled 
with 27 scientifi c names. Thus, when plots from multiple sources report the 
presence of  Andropogon virginicus , it is impossible to know how to combine 
them without knowledge of the taxonomic treatments the original authors fol-
lowed, and even then there could easily be ambiguities requiring lumping to 
obtain unambiguous bins of taxon occurrences. The current situation in Europe 
serves to illustrate the mind - numbing complexity of integrating accurately and 
precisely across data sets. Schamin é e  et al.   (2009)  stated that in order to establish 
the TurboVeg - based joint European vegetation database SynBioSys Europe 
(Schamin é e  et al.   2007 ), 30 national species lists with 300,000 names had to be 
mapped against each other. This mapping is strictly one of synonymy and dif-
ferent applications of names are in many cases not accounted for, leaving many 
potential traps for the unwary data aggregator.  

   2.5.2    Plot  d ata  i ntegration  a cross  d ata  s ets 

 Compared to taxonomic integration, merging other aspects of plot records is 
relatively straightforward, even if somewhat arbitrary. For the most part there 
are only three major impediments: inconsistencies in cover scales, plot size and 
defi nition of vertical strata. 

 To the extent that cover scales nest into a small number of bins, such as 
those of the Braun - Blanquet scale, it is easiest to simply condense the number 
of bins. Where this nesting approach is not possible, one can convert the 
cover scale value to an absolute cover value and then back to a new cover scale 
value. In doing so the reader is advised to convert to the geometric mean of 
the range rather than the arithmetic mean as species occurrences tend to 
occur disproportionately in the lower portion of each cover class. Where no 
such conversions seem reasonable, analyses should be conducted with simple 
presence - absence data. In fact, some authors have argued that there is more 
interpretable information in presence - absence data than cover data because 
the degree of absence of a species cannot be known or readily estimated 
(Lambert  &  Dale  1964 ; Smartt  et al.   1976 ; Wilson  2012 , but see Beals  1984 ; 
McCune  1994 ). 

 Combining plots of different sizes in a single database is at best problematic. 
The variable most sensitive to plot size is species richness, but a rough correction 
can be achieved by adjusting the species richness of plots that are at most within 
a doubling of the target size by use of the species – area relationship (see Fridley 
 et al.   2005 ). More problematic and uncertain are the implications of plot size 
differences for calculation of similarity and designation of species constancy and 
indicator species. The reduction in species number with decreasing plot size of 
necessity decreases similarity to larger plots with more species, and constancy is 
similarly sensitive to plot size (Dengler  et al.   2009 ). As a rule of thumb, all 
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comparisons of richness should be made with plots of identical size, and all 
studies based on species similarity or constancy should be based on plots that 
do not range more than perhaps four - fold in area. 

 Most plot protocols call for recognition of vertical strata within a community, 
for which separate cover values are assigned for species. Unfortunately, these 
classes are not consistent between protocols. For example, the height cutoffs for 
strata can vary, and the actual defi nition of a stratum can vary from being based 
on the height of the individual plants (e.g. Mucina  et al .  2000 ) to simple vertical 
bands of leaf area (e.g. Allen  1992 ). Vertical strata can be combined for purposes 
of data integration and Jennings  et al.   (2009)  suggest that a simple probabilistic 
calculation of species total cover across strata ( C i  ) can be calculated as

   C
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 assuming the leaf area in each stratum (% cov j ) is statistically independent of 
the other strata.  

   2.5.3    Sampling  i ntensity 

 The distribution of plot frequencies in phytosociological databases is far from 
even. Some types of vegetation have hundreds or even thousands of plots, 
whereas others may be represented by only a small number. In some forms 
of analysis, the plots from the abundant types would dominate. Consequently, 
if we want an analysis to span the range of vegetation variation in the database, 
it may prove necessary to sample from the database in a stratifi ed random 
fashion. Knollov á   et al.   (2005)  proposed several methods for stratifying phy-
tosociological databases related to distribution along environmental or geo-
graphical axes, or relative to between - plot variation in species composition. 
Subsequently, a resampling method based on between - plot dissimilarity in species 
composition was proposed by De C á ceres  et al.   (2008) . Lengyel  et al.   (2011)  
proposed a resampling method based on species composition where subsets 
of the database are selected randomly and the subsets with the lowest mean 
dissimilarity and lowest variance in similarity are retained for purposes of 
stratifi cation.   

   2.6    Community  e ntitation 

 In Section  2.3  we distinguished between classifi cation as the creation of classes 
 versus  the assignment of objects to classes. In this section we address the creation 
of classes or types from an undifferentiated data set of vegetation plots or relev é s, 
which we will refer to as entitation  –  the creating of entities. Assignment of new 
vegetation plots to existing classifi cations is discussed as determination in Section 
 2.9  below. 
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 Vegetation scientists may have a broad range of ultimate objectives for clas-
sifying vegetation (see Section  2.1.1 ). From an operational perspective, however, 
the objective of vegetation classifi cation is fairly simple  –  to create a set of veg-
etation types or syntaxa where (1) the types are mutually exclusive (no vegetation 
plot belongs to more than one type) and (2) the types are exhaustive (all vegeta-
tion plots are assigned to a type). Mathematicians call such a set of classes a 
 ‘ partition ’ : every object is a member of strictly one set, and every set has at least 
one member. Perhaps not surprisingly, there is an extremely large number of 
ways to produce such a partition. In general, methods of vegetation classifi cation 
can be characterized as expert - based  versus  algorithmic, with the algorithmic 
methods divided into numerical  versus  combinatorial. 

   2.6.1    Classifi cation by  t able  s orting 

 Vegetation classifi cation by sorting of phytosociological tables has a long history 
in vegetation ecology, with methodological monographs from Braun - Blanquet 
 (1928) , Ellenberg  (1956)  and Becking  (1957) , and with subsequent reviews by 
Westhoff  &  van der Maarel  (1973)  and Mueller - Dombois  &  Ellenberg ( 1974 , 
chapter  9 ). 

 In table sorting methods, the data on species occurrence or abundance by plot 
are organized in a rectangular matrix with species as rows and plots as columns. 
The objective is to order the rows and columns of the tables to create a block -
 structured table where abundances for individual species are concentrated in 
adjacent columns of a row, and species with similar distributions are concen-
trated in adjacent rows so that plots of similar composition occur in proximity 
in the table. Based on successive re - ordering of the rows and columns, the table 
can be divided into sections or blocks of co - occurring species with the blocks 
arranged in a diagonal down the table. Vegetation plots that include one (or 
more) of these blocks are assigned to the same syntaxon, and species that 
compose a given block are considered diagnostic of the syntaxon in which 
they occur. The specifi c meaning of diagnostic has been the subject of consider-
able scientifi c development. Szafer  &  Pawlowski  (1927) , Becking  (1957) , Whit-
taker  (1962) , Westhoff  &  van der Maarel  (1973)  and Mueller - Dombois  &  
Ellenberg  (1974)  distinguish  ‘ character species ’  based on fi delity of occurrence 
within classes and  ‘ differentiating (or differential) species ’  that are diagnostic in 
differentiating one class from another class while not necessarily being restricted 
to the focal class. 

 Table sorting by inspection was superseded many years ago by computer - aided 
approaches. The direct optimization of structured tables by iterative algorithms 
is diffi cult due to the extremely large number of possible solutions. The number 
of distinct table orderings is  n!     ×     m!  where  n  is the number of plots and  m  
is the number of species; even a simple table of 10 plots and 20 species 
has 10!    ×    20!    >    8.8    ×    10 24  possible orderings. Developing effi cient numerical 
approaches to producing sorted tables thus became an area of active research 
(Westhoff  &  van der Maarel  1973 ). 

 In the past decade the development of computer - based or computer - aided 
table sorting has received renewed attention motivated in part by the need to 
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manage tables of truly enormous size, such as when combining multiple national 
classifi cations into European - wide classifi cations (Bruelheide  &  Chytr ý   2000 ). 
Given the diffi culty of direct optimization of large tables, most approaches have 
centred on statistical characterization of diagnostic species (see Section  2.8.2 ). 
Among the more notable advancements was the COCKTAIL algorithm for defi n-
ing species groups developed by Bruelheide  (2000) . COCKTAIL starts with a 
preselected group of relev é s or species and employs an iterative membership 
algorithm to refi ne the list of member species in each species group. Once no 
further candidate species are identifi ed for membership in the type, a new type 
is begun from an alternative initial relev é  or species group. Species fi delity to a 
type is based on the  u  statistic (see Section  2.8.3 ).  

   2.6.2    Numerical  c lassifi cation 

 The most common approach to vegetation classifi cation is by numerical means. 
Typically this requires defi ning a similarity or dissimilarity matrix among all the 
vegetation plots, and then clustering the plots into types. In operation, it is a 
three - step process of (1) defi ning (dis)similarity, (2) choosing a clustering algo-
rithm, and (3) choosing the number of clusters revealed or desired. All three 
decisions strongly affect the results and have to be made in concert. 

  Dissimilarity and distance.  There is an extraordinary number of dissimilarity/
distance indices proposed or employed in vegetation ecology. Goodall  (1973) , 
Orl ó ci  (1978) , Hub á lek  (1982)  and Legendre  &  Legendre  (1998)  all present 
comprehensive descriptions of indices that have been employed in community 
ecology; Mueller - Dombois  &  Ellenberg  (1974) , Kent  (2012)  and Ludwig  &  
Reynolds  (1988)  emphasize shorter lists of commonly used indices. Confusingly, 
many indices have been independently derived and given more than one name. 
Other indices have a different name for the similarity index and its complement, 
the dissimilarity index, but vegetation ecologists often ignore the distinction and 
use the same name for both. Important distinctions among the indices concern 
the distinction between dissimilarity and distance and the use of presence/
absence versus abundance data. 

 Dissimilarity and distance are similar concepts that characterize, on a quantita-
tive scale, how different vegetation sample plots are from each other, but the 
mathematical bases of dissimilarity and distance are different. Dissimilarity is 
based on set theory and represents the ratio of the disjunct elements of two sets 
(belonging to one or the other but not both) to the union of the two sets. Plots 
that have no species in common have a dissimilarity of 1, and plots that are 
identical have a dissimilarity of 0, with all other possibilities scaled [0,1]. 
Distance is a geometric concept and represents the sum of all the pairwise dif-
ferences in abundance for species which occur in one or both plots. Identical 
plots have a distance of 0. Plots with no species in common have a distance 
determined by species richness (for presence/absence indices) or standing crop 
(for quantitative indices) of the two plots; there is no upper bound. In practice 
a matrix is constructed with  n  rows and  n  columns for  n  vegetation plots where 
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each row or column in the matrix expresses the dissimilarity or distance of one 
vegetation plot to all the other plots. Both dissimilarity and distance follow a 
set of axioms:

   1      d ii      =    0, refl exive property; the dissimilarity or distance from a plot to itself 
is zero;  

  2      d ij      =     d ji  , symmetric property; dissimilarity is independent of direction.    

 These two axioms are generally true of all dissimilarities or distances employed 
in vegetation ecology. Some, but not all, indices meet a third axiom:

   3      d ik      ≤     d ij      +     d jk  , i.e. the dissimilarity or distance of a plot to another plot is less 
than or equal to the sum of the distances involving any third plot.    

 The third axiom is called the triangle inequality property and does not hold for 
many dissimilarity indices. Indices that meet all three axioms are  ‘ metric ’  and 
play a key role in analyses based in linear algebra. 

 Dissimilarity indices for presence/absence data often employ a 2    ×    2 con-
tingency table notation (Fig.  2.1 ). One of the earliest commonly used indices is 
the Steinhaus index (the complement of the Jaccard index): ( b     +     c )/( a     +     b     +     c ); 
see Fig  2.1 . This index can be viewed as the ratio of the number of species in 
one but not both plots to the pooled species list of the two plots. A commonly 
used alternative is the Marczewski index (the complement of the S ø rensen 
index): ( b     +     c )/(2 a     +     b     +     c ), the ratio of the species in one but not both plots to 
the average number of species in the two plots. Both indices ignore  d , the number 
of species in the data set that don ’ t occur in either plot. Goodall  (1973)  and 
Legendre  &  Legendre  (1998)  argue strongly that ecologists should only use 
presence/absence dissimilarity indices that ignore joint absence ( d ).   

 For quantitative dissimilarity/distance indices, the abundance scale used can 
have a profound effect on the results. In vegetation ecology the scale is often 
not purely numeric (e.g. the Braun - Blanquet cover/abundance scale), and a lively 
debate has developed concerning the appropriate use of such data in quantitative 
analyses (Podani  2005 ; van der Maarel  2007 ). Nonetheless, most vegetation 

     Fig. 2.1     Contingency table notation for presence/absence dissimilarity indices.  
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ecologists have adopted a pragmatic approach, and transform such scales to a 
numeric scale (see van der Maarel  1979 ; Noest  et al.   1989 ). For scales with 
discrete classes of abundance, the widths of the intervals and the values chosen 
to represent each interval (often the interval midpoint but preferably the geo-
metric mean of the endpoints) strongly affect the results. In general, linear 
abundance scales should be transformed to a convex scale (e.g. square root or 
log) that emphasizes differences for low values in the scale. 

 In addition to transformation, standardization of data can have a strong effect 
on results. Three standardizations are in common use in vegetation ecology: 
species maximum standardization, sample total standardization and Wisconsin 
double standardization. Species maximum standardization divides the abundance 
of each species in each plot by the maximum value observed for that species 
in all plots in the data set, giving all species an equal voice in the calculation 
of dissimilarity/distance, and thus strongly de - emphasizing differences in 
dominance among sample plots. This can be useful where indicator species 
(Section  2.8.2 ) exhibit low abundances and need increased weighting relevant 
to the dominants. However, this transformation can also increase the noise 
associated with rare species in the data and may work best where rare species 
are removed or down - weighted. In a comprehensive analysis of the performance 
of different dissimilarity indices on simulated data, Faith  et al.   (1987)  found that 
a species maximum standardization improved the performance of most indices; 
however, their simulated data may have contained disproportionately few 
rare species. 

 Sample total standardization divides the abundance of each species in a 
plot by the sum of abundances for all species in that plot. This transformation 
treats total abundance for each plot as equal, eliminating differences in produc-
tivity or standing crop among samples. This standardization can be effective 
when data were collected in different years or seasons, by different parties, or 
measured on different scales. Sample total standardization plays an important 
role when using geometric distances, such as Euclidean or Manhattan distance 
(see Table  2.2 ). Geometric distances quantify the differences between plots 
without accounting for what the plots may have in common and can give a 
distorted perspective. A sample total standardization scales the differences rela-
tive to the total abundance and eliminates such problems. Some dissimilarity/
distance indices (e.g. chord distance described later) have an inherent sample 
total standardization. 

 In Wisconsin double standardization, named for its use by Bray  &  Curtis 
 (1957) , data are fi rst standardized by species maximum standardization and then 
by sample total standardization. Bray  &  Curtis ’ s rationale for this sequence was 
that different life - forms (trees versus non - trees) were measured on different 
scales and the species maximum standardization achieved a common scale. The 
subsequent sample total standardization corrected for the fact that not all plots 
had the same number of measurements. 

 Commonly used quantitative dissimilarity indices in vegetation ecology include 
the Bray – Curtis index (Table  2.2 ). The Bray – Curtis index has been criticized 
for not being a true metric (Orl ó ci  1978 ). However, in comparative tests it 
has often performed extremely well (Faith  et al.   1987 ). Alternatively, the 
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Marczewski – Steinhaus index (Table  2.2 ) is similar to the Bray – Curtis index, but 
it is a true metric.   

 Geometric distances employed in vegetation ecology include Euclidean and 
Manhattan (or city - block) distance (Table  2.2 ). Euclidean distance is the common 
distance we use to measure the distance between objects in our three - dimensional 
world and seems quite intuitive. Due to its use of squared abundances, however, 
it is quite sensitive to the range of abundances in the data. Manhattan distance 
is named for its similarity to walking distances in a city where all distances 
occur along the principal axes and travel along the diagonals is not possible. 
Both Euclidean and Manhattan distance benefi t from a sample total standardiza-
tion. Legendre  &  Gallagher  (2001)  examined the behaviour of a number of 
dissimilarities and distances on artifi cial data and observed that Hellinger dis-
tance (Table  2.2 ) performed well at recovering ecological gradients. Hellinger 
distance can be viewed as the Euclidean distance of square root transformed 
sample total standardized data. Orl ó ci  (1967, 1978)  has demonstrated good 
results with chord distance (Table  2.2 ). Both Hellinger and chord distance use 
inherent sample total standardization. 

  Hierarchical agglomerative clustering.  Hierarchical agglomerative clustering 
algorithms begin with each vegetation sample in its own  ‘ cluster ’  and then 
iteratively fuse the least dissimilar clusters at each step. Ultimately, after  n  −   1 
fusions (for  n  vegetation plots), all the plots are in a single cluster. The algorithms 
differ in how they defi ne  ‘ least dissimilar ’  for clusters with more than one 
member (Table  2.3 ). Over the years many algorithms have been proposed 

  Table 2.2    Defi nitions of dissimilarity and distance;  d i,j   is the dissimilarity of plot  i  to 
plot  j, x i,k   is the abundance of species  k  in plot  i  for  p  species,  x   i , +   is the sum of 
abundances for all species in plot  i . 
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and tested based in multidimensional geometry, graph theory, and information 
theory. We restrict our discussion to algorithms commonly used in vegetation 
ecology.   

 In single linkage (nearest neighbour) clustering, the dissimilarity of two clus-
ters is the dissimilarity between the two least dissimilar members of the respec-
tive clusters (Fig.  2.2 a). As clusters get larger, there are more members you could 

  Table 2.3    Hierarchical agglomerative clustering criteria; 
 d A,B   is the dissimilarity between cluster A and B,  d i,j   is the 
dissimilarity between plots  i  and  j, i   ∈   A  indicates plot  i  is 
a member of set  A , | A | is the number of members of 
cluster  A ,   dA is the mean coordinate on axis d for plots in 
cluster  A , and Var  d k   is the variance of dissimilarities 
formed in fusing cluster  A  with  B . 

   Linkage     Equation  

  Single      d min d i A j BA B ij, : ,= ∈ ∈{ }   
  Complete      d max d i A j BA B ij, : ,= ∈ ∈{ }  

  Average      d
A B

dA B ij
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  Ward ’ s      d Var d k A BA B k, := ∈ ∪   

     Fig. 2.2     Hierarchical agglomerative algorithms differ specifi cally in how they defi ne 
dissimilarity between clusters with more than one member.  
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be least dissimilar to, and existing clusters have a tendency to grow at the 
expense of starting new clusters. This leads to the phenomenon of  ‘ chaining ’  
(Williams  et al .  1966 ) where new vegetation plots are continually added to one 
large existing cluster. Due to the tendency to exhibit strong chaining, single 
linkage clustering is now rarely employed (Legendre  &  Legendre  1998 ; Podani 
 2000 ; McCune  &  Grace  2002 ).   

 In complete linkage clustering, the dissimilarity of two clusters is the dissimi-
larity between the two most dissimilar vegetation plots of the respective clusters 
(Fig.  2.2 b). This approach emphasizes maximum rather than minimum dissimi-
larity among clusters. As clusters get larger, there are more members to be 
potentially maximally dissimilar to, and joining existing clusters gets harder. This 
leads to more numerous, equally - sized often spherical clusters. In both the single 
linkage and complete linkage algorithms, the dissimilarity between clusters is 
decided by a single dissimilarity and the algorithms operate at the plot - level 
rather than the cluster - level (Williams  et al.   1966 ). The algorithms are, therefore, 
sensitive to unusual plots or outliers. 

 In the average linkage method (also called UPGMA or Unweighted Paired 
Group using Averages; Sokal  &  Sneath  1963 ), the dissimilarity is the average 
dissimilarity of each plot in each cluster to all the plots on the other cluster (Fig. 
 2.2 c). Average linkage performs intermediate to single linkage and complete 
linkage, i.e. it is less prone to chaining than single linkage, but may form irregu-
larly shaped clusters of varying size. 

 Ward ’ s algorithm attempts to minimize the sums of squared distances from 
each plot to the centroid of its cluster (Fig.  2.2 d), equivalent to variance mini-
mization (Legendre  &  Legendre  1998 ). Beginning with every plot in its own 
cluster it fuses those clusters that result in the minimum increase in the sum of 
squared distances. Because it is based on a sum - of - squares criterion, the algo-
rithm is most appropriately applied to a Euclidean distance matrix of plot dis-
similarities (Legendre  &  Legendre  1998 ). However, many vegetation ecologists 
have been successful in applying Ward ’ s algorithm to other dissimilarities such 
as S ø rensen ’ s (e.g. Wesche  &  von Wehrden  2011 ). Ward ’ s algorithm tends to 
create compact spherical clusters where much of the variability in the dendro-
gram is compressed in the smaller clusters. This makes choosing relatively few 
large clusters rather easy, but sometimes hides considerable variability among 
the more numerous smaller clusters. 

 Lance  &  Williams  (1967)  realized that many of the existing hierarchical 
agglomerative algorithms could be generalized to a single algorithm with specifi c 
coeffi cients in the among - cluster distance equation. This algorithm is mostly 
known today as  ‘ fl exible -  β  ’  after one of the coeffi cients in the algorithm. 
Fig.  2.3 d shows a fl exible -  β  dendrogram with  β  set at the commonly employed 
value of  − 0.25. With this value (and suitable constraints on the other coeffi -
cients), fl exible -  β  is intermediate to average linkage and complete linkage, and 
is generally recognized as a good compromise. By assigning increasingly negative 
values (e.g.  − 0.5) to  β , the fl exible -  β  algorithm more nearly approximates Ward ’ s 
algorithm and provides an alternative that alleviates the concerns over requiring 
Euclidean distance.   
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 All the hierarchical agglomerative algorithms initially produce a dendrogram 
that portrays the sequence of fusions into clusters of the sample plots. Dendro-
grams are aggregated from the bottom up. Early fusions of clusters in the algo-
rithm constrain later fusions, and in hierarchical clustering the assignment of 
plots to clusters is never re - evaluated. Consequently, the relatively few clusters 
produced near the top of the dendrogram may show considerable artefact 
in plot assignment. While highly informative, dendrograms can be visually 
misleading as plots that are adjacent to each other but attached to different 
 ‘ branches ’  higher up may be quite dissimilar. An example is shown in Fig.  2.3  
where the complete linkage and fl exible -  β  algorithms produce what seem to be 
quite different dendrograms; re - ordering the plots along the horizontal axis 
would show that the solutions are very similar and the four cluster solutions are 
identical. 

 Dendrograms must be  ‘ sliced ’  to generate clusters of plots on the same 
 ‘ branch ’  and the question of where to slice is a critical issue. Given an  a priori  
desired number of clusters you can solve for the height at which to slice. Fig. 
 2.3  shows all four dendrograms sliced to produce four clusters. Often, however, 
the correct or desired number of clusters is not known, and we are interested 
in fi nding natural breaks in the dendrogram where the results are relatively 
insensitive to the precise height at which we slice. In the example shown, natural 

     Fig. 2.3     Dendrograms for hierarchical agglomerative clustering algorithms based on 
the same dissimilarity matrix but using different linkages.  
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breaks result in two or four clusters for complete linkage (Fig.  2.3 b), two, three 
or fi ve clusters for average linkage clustering (Fig.  2.3 c) and two or three clusters 
for fl exible -  β  (Fig.  2.3 d). Further down in the dendrogram it is much more dif-
fi cult to visually identify natural breaks and algorithmic approaches may be 
required. 

  Hierarchical divisive clustering.  Hierarchical divisive clustering begins will all 
plots in a single cluster, which is then divided into two subclusters recursively 
until the clusters get too small or too homogeneous to subdivide according to 
criteria established by the user. Hierarchical divisive clustering algorithms are 
combinatorial, as opposed to numerical, and computing optimal results may be 
impossible. Accordingly, most divisive algorithms do not examine all possible 
solutions. 

 Two divisive algorithms are currently used in vegetation ecology: Two Way 
Indicator Species Analysis (TWINSPAN) and Divisive Analysis Clustering 
(DIANA). TWINSPAN (Hill  1979 ) iteratively partitions the fi rst axis of a cor-
respondence analysis ordination (see Chapter  3 ). In practice the algorithm makes 
a number of  ad hoc  adjustments in choosing the exact point at which to partition 
at each step. Because TWINSPAN bifurcates each branch, the original algorithm 
always produces classifi cations where the number of classes is a power of two. 
Role č ek  et al.   (2009)  recently proposed a modifi cation of the algorithm that 
employs a measure of cluster heterogeneity to determine which branches to split 
further. The result is a more natural classifi cation with similar levels of cluster 
heterogeneity. 

 Kaufman  &  Rousseeuw  (1990)  introduced a hierarchical divisive algorithm, 
DIANA, that operates on a dissimilarity matrix. At each iteration DIANA identi-
fi es the cluster with the largest diameter (maximum within - cluster dissimilarity, 
equivalent to the complete linkage criterion). Within that cluster the plot with 
the greatest average dissimilarity to all other plots in that cluster is identifi ed 
and set aside as the seed for a  ‘ splinter group ’ . All plots in the cluster that are 
more similar to the splinter group than the original cluster are then assigned to 
the splinter group, which forms a new cluster. Because DIANA is numerical, 
rather than combinatorial, it is fairly rapid but somewhat sensitive to outliers. 
Like hierarchical agglomerative algorithms, DIANA produces a dendrogram 
rather than clusters, and must be sliced to generate clusters. Because of the 
maximum diameter criterion, DIANA produces results most similar to complete 
linkage hierarchical agglomerative clustering. 

  Non - hierarchical partitioning algorithms.  Non - hierarchical partitioning algo-
rithms attempt to derive clusters from an undifferentiated set of vegetation plots 
directly without a hierarchical dendrogram. In contrast to hierarchical approaches 
the number of clusters must be specifi ed in advance. Non - hierarchical partition-
ing of objects into types is mathematically diffi cult due to the extraordinary 
number of possible solutions. For example, to classify only ten vegetation plots 
into non - overlapping types there are 118515 possible solutions. To simplify 
fi nding good solutions to this problem, many non - hierarchical algorithms search 
for suitable  ‘ seeds ’  to start each cluster and then assign each vegetation plot to 
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the nearest seed. The original approach was called the k - means algorithm 
(Hartigan  &  Wong  1979 ), which minimized the sum of squared distances 
between points and the centroid of the cluster to which they were assigned. 
Modifi cations of the algorithm generally involve methods to choose the initial 
seeds and iteratively re - designate seeds. The k - means algorithm is strongly biased 
to create circular clusters of equal size rather than identifying natural disconti-
nuities in the data. In addition, the algorithm is sensitive to the initial choice of 
seeds, and often requires multiple independent starts to ensure a good (although 
not necessarily optimal) solution. 

 Kaufman  &  Rousseeuw  (1990)  introduced a variation on k - means clustering 
called Partitioning Around Medoids (PAM). In the PAM algorithm, the seed for 
cluster formation (the medoid) represents an actual plot, called the representa-
tive object, rather than a geometric centroid. A deterministic algorithm selects 
the initial medoids, and because PAM does not require calculating centroids, it 
can operate on a broad range of dissimilarity indices other than Euclidean dis-
tance. Roberts  (2010)  defi ned two iterative non - hierarchical partitioning algo-
rithms called OPTPART and OPTSIL. OPTPART iteratively reassigns plots to 
clusters to maximize the ratio of within - cluster similarity to among - cluster simi-
larity. OPTSIL iteratively reassigns plots to clusters to maximize the similarity 
of a plot to its assigned cluster compared to the next most similar cluster (see 
Section  2.7.2  for more detail). Fuzzy clustering algorithms have also been pro-
posed as an alternative to non - hierarchical algorithms wherein plots can have 
partial membership in multiple types (Equihua  1990 ; Podani  1990 ; De C á ceres 
 et al.   2010a ). These approaches recognize that not all plots are representative 
of a single type and sometimes are intermediate to clearly recognized types, but 
the resulting classifi cation structure is more complex. 

 Non - hierarchical partitioning methods are subject to the requirement that 
the number of clusters to be solved must be specifi ed in advance. They can 
also be slow to converge to a solution for some data sets. In practice, it is 
generally necessary to try multiple starts for a variety of cluster numbers and 
to compare the results to identify the best solution based on cluster validity 
statistics (Section  2.7 ), cluster characterization based on ancillary data (Section 
 2.8 ), or synthesis tables of the clusters. On the other hand, non - hierarchical 
partitioning algorithms generally are not subject to the artefact of fusion sequences 
constraining results because all plots are re - examined for best fi t at each 
iteration.   

   2.7    Cluster  a ssessment 

 The two objectives of assessing vegetation classes derived from any clustering 
method are to assure that (1) types are relatively homogeneous and distinct from 
other types, and (2) distributions of species within types exhibit high fi delity and 
ecologically interpretable patterns. Assessing the goodness of clustering ( ‘ cluster 
validity ’ ) is a vast fi eld with a voluminous literature. Aho  et al.   (2008)  present 
a recent review of cluster assessment methods for vegetation classifi cations. 
These authors distinguish geometric evaluators based on dissimilarity matrices 
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versus non - geometric evaluators based on species distributions within clusters, 
often with a view to identifying diagnostic species. Some methods attempt to 
measure structure in a vegetation table directly. 

   2.7.1    Table -  b ased  m ethods 

 Feoli  &  Orl ó ci  (1979)  proposed a method termed Analysis of Concentration 
(AOC) to assess the structure of vegetation tables based on the density of 
non - zero values within species and sample blocks recognized by the vegetation 
ecologist. Blocks with high density (dominated by the presence of species in 
plots within the block) and blocks of low density (dominated by the absence of 
species in plots within the block) are compared to a random expectation by  χ  2  
analysis. Deviation from expectation is a direct measure of the degree of struc-
turing of the table, and it is possible to scale the divergence to a relative 
scale of [0,1]. Many of the optimization criteria from iterative table - sorting 
algorithms (e.g. Podani  &  Feoli  1991 ; Bruelheide  &  Flintrop  1994 ) can be used 
to measure the quality of the fi nal results even when that algorithm was not 
employed to defi ne the classes. Generally these statistics are insensitive to the 
ordering of species or plots within blocks, but still measure cluster structure from 
the table.  

   2.7.2    Dissimilarity -  b ased  m ethods 

 Dissimilarity - based methods of cluster assessment operate on dissimilarity matri-
ces, and can be applied whether numerical clustering was employed in defi ning 
the types or not. Aho  et al.   (2008)  refer to these approaches as geometric evalu-
ators and list fi ve statistics useful in assessing goodness of clustering: Average 
Silhouette Width (Rousseeuw  1987 ), C - Index (Hubert  &  Levin  1976 ), Gamma 
(Goodman  &  Kruskal  1954 ), the PARTANA (PARtition ANAlysis) ratio (Roberts 
 2010 , Aho  et al.   2008 ), and Point Biserial Correlation (Brogden  1949 ). Two of 
these indices are highlighted below. 

 Rousseeuw  (1987)  defi ned silhouette width as a measure of the degree to 
which plots are more similar (less dissimilar) to the type to which they are 
assigned than to the most similar alternative type. Positive values indicate a good 
fi t, and negative values indicate samples more similar to another cluster than to 
the cluster to which they are assigned. Thus, the quality of each cluster can be 
assessed by the mean silhouette widths of all plots assigned to that cluster and 
the number of negative silhouette widths, and the overall quality of the classifi -
cation can be assessed by the global mean silhouette width and the number of 
negative silhouette widths. Silhouette width is a  ‘ local ’  evaluator in the sense 
that each plot is only compared to the single other cluster to which it is least 
dissimilar regardless of the number of clusters. That comparative cluster may be 
different for every plot within a cluster. The PARTANA ratio, the dissimilarity -
 based statistic defi ned by Roberts (Roberts  2010 ; Aho  et al.   2008 ), calculates 
the ratio of the mean similarity of plots within types to the mean similarity of 
plots among types. Good clusters have a high within - cluster similarity and low 
among - cluster similarities, and plots that fi t well within their cluster have a 
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higher mean similarity to their cluster than to other clusters. In contrast to sil-
houette width, PARTANA is a global statistic that compares every cluster to every 
other cluster.  

   2.7.3    Indicator  s pecies  m ethods 

 Statistical analysis of diagnostic or indicator species is often used as an evaluator 
of clustering effectiveness. The IndVal statistic (Dufr ê ne  &  Legendre  1997 , and 
as modifi ed by Podani  &  Cs á nyi  2010 ; see Section  2.8.4 ) and the OptimClass 
approach of Tich ý   et al.   (2010)  have both been effectively used in selecting 
 ‘ optimal ’  solutions from competing alternative classifi cations. However, as the 
identifi cation of diagnostic and indicator species is of signifi cant interest in com-
munity characterization, it is treated in Section  2.8 .   

   2.8    Community  c haracterization 

 Once a set of types has been developed, it is desirable to develop concise rep-
resentations of the compositional and ecological characteristics of the types. The 
data often represent a large number of species and plots, as well as possible 
environmental attributes, and effi cient summaries are required for effective 
communication. 

   2.8.1    Synoptic  t ables 

 One common and simple approach is to produce a synoptic table for the types 
recognized with species as rows, types as columns, and values of frequency, mean 
abundance, or preferably both, for each species in each type entered into the 
table. In US vegetation classifi cations such tables are often called constancy/
abundance tables. Similarly to the more expansive structured tables described in 
Section  2.7.1 , the species (table rows) are often ordered to highlight the diag-
nostic species of the types. In large data sets with numerous types, even the 
synoptic tables can get quite large and unwieldy.  

   2.8.2    Diagnostic and  i ndicator  s pecies 

 Deriving statistical indices of diagnostic or indicator species has been an area of 
signifi cant activity in the past decade. Here we distinguish two groups of ap -
proaches: probabilistic versus composite. In general the probabilistic approaches 
calculate the  ‘ fi delity ’  of species to types or clusters based on presence/absence 
data and evaluate the deviation of species occurrence within types from a 
random distribution of taxa. Generally, each type or class is considered indi-
vidually against all the other types pooled. The composite approach combines 
fi delity and the distribution of a species ′  abundance across types to create a single 
index. Because the null distribution of this index is not known, the deviation 
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from expectation for the index values has to be estimated by permutation 
techniques. 

 Juh á sz - Nagy  (1964)  in De C á ceres  et al.   (2008)  described three aspects of 
species fi delity that infl uence the indices in use today: Type I  –  the occurrence 
of a species typically only within a vegetation type, although it may not occur 
in all (or even most) plots within the type; Type II  –  the commonness or ubiquity 
of a species within a type although the species may be widespread outside the 
type; Type III  –  joint fi delity where a species occurs primarily within a single 
type and occurs in all (or most) plots within that type. The fi rst case we might 
call  ‘ suffi cient ’  in that the occurrence of that species is suffi cient to indicate the 
type, the second case we might call  ‘ necessary ’  in that if you are in that type 
you should see that species, and the third case we might call necessary and 
suffi cient.  

   2.8.3    Probabilistic  i ndices of  s pecies  fi  delity 

 The general approach to probabilistic identifi cation of diagnostic species is to 
calculate an index of concentration, and then the probability of obtaining as 
high or higher a concentration of a species within a given type as is observed. 
For simplicity, these indices are generally calculated on presence/absence data 
and concentration is calculated as number of occurrences (though see Willner 
 et al.   2009 ). The most common approach is to produce a 2    ×    2 contingency 
table of occurrences of a species in a type and calculate the  Φ  index (Sokal  &  
Rohlf  1995 : 741, 743). Following notation established by Bruelheide  (2000) , 
the analysis is as follows:

    N     =    total number of sites  
   N p      =    number of sites in type of interest  
   n     =    number of occurrences of species of interest  
   n p      =    number of occurrences of species in type    

   Φ =
× − ×

× × −( ) × −( )
N n n N

n N N n N N
p p

p p

     

  Φ  takes values in [ − 1, 1], refl ecting perfect avoidance to perfect concordance 
of the species in the type. The statistical signifi cance of the index can be calcu-
lated from Fisher ’ s exact test. Bruelheide  (2000)  proposed that for species that 
occurred more than ten times a normal distribution approximation could be 
used, calculating
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 dividing the observed number of occurrences  n p   minus the expected number of 
occurrences (  μ      =     n     ×     N p  / N ) by the standard deviation of the binomial, preferably 
after applying a continuity correction to the numerator. Chytr ý   et al.   (2002)  
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preferred to divide by the standard deviation of a hypergeometric random vari-
able and called the resulting value  u hyp  .
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n N N n N N N N
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× × −( ) × − × −( )( )( )
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 In either case the index of fi delity is scaled in units of standard deviation from 
expectation, rather than [ − 1, 1]. As we are primarily interested in positive values 
of the index, a one - tailed test of signifi cance can be performed on the index. 

 Chytr ý   et al.   (2002)  compared a range of statistical indices (including  Φ ,  u  
and  u  hyp ) for use in identifying diagnostic species on a classifi ed data set from 
dry grasslands in the Czech Republic. Rankings achieved by the probabilistic 
indices were very similar, although correction for continuity tended to reduce 
the values for rare species. Tich ý   &  Chytr ý   (2006)  argued that fi delity indices 
such as  Φ  are sensitive to variability in the size of types or clusters, and proposed 
a modifi cation of the  Φ  coeffi cient that normalizes cluster size. The number 
of occurrences for a species and the number of occurrences within the type of 
interest are rescaled to a constant cluster size while maintaining the ratio of 
within - type to out - of - type occurrences. The new equalized  Φ  values are compa-
rable across clusters of different sizes. By adjusting the size of the normalized 
cluster relative to the total number of plots, the index can be made more or less 
sensitive to rare species relative to more common species. Normalized  Φ  values 
are not appropriate for testing statistical signifi cance, so signifi cance testing 
should occur before normalizing. Alternatively, the data can be subsampled to 
equal cluster sizes before the analysis (see Section  2.5.3 ). 

 De C á ceres  et al.   (2008, 2009)  present a detailed discussion of the importance 
of context in identifying diagnostic and differential species. Willner  et al.   (2009)  
studied a range of fi delity indices on real data and found that differences in 
context were more important than the use of different indices of fi delity in 
identifying diagnostic species. The range of other vegetation types considered 
strongly infl uences the determination of species values. Approaches that compare 
the presence of species within types to outside the type can fi nd character species 
with high fi delity, but miss many differential species that are not globally dif-
ferential. A solution proposed long ago by Goodall  (1953)  is to compare the 
distribution of species within types to the type where the species is next most 
common. 

 Most of the numeric approaches to identifying indicator species focus on 
species with high fi delity as opposed to differential species. Tsiripidis  et al.   (2009)  
developed a method based on taxon relative constancy within types to identify 
differential species directly. While the algorithm is somewhat  ad hoc , it proved 
successful when applied to both simulated and actual data, and is logically related 
to thresholds used in more classical phytosociology. Alternatively, a statistical 
numeric approach to identifying differential species is to use classifi cation trees 
(Breiman  et al.   1984 ) or random forest classifi ers (Breiman  2001 ) on the plot -
 level compositional data to identify species useful in predicting the membership 
of plots in types (see Section  2.9.2 ).  
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   2.8.4    Composite  i ndices 

 The most widely employed statistic for identifying diagnostic species in a clas-
sifi cation is Dufr ê ne  &  Legendre ’ s  (1997)  IndVal statistic. Using the notation 
introduced by Bruelheide ( 2000 ; see Section  2.8.3 )
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 where  IV ip   is the indicator value of species  i  to cluster  p ,  a ij   is the abundance of 
species  i  in plot  j ,  c  is a cluster from one to  C  clusters, and  N c   is the number of 
plots in cluster  c . 

 The fi rst term ( A ip  ) is the average abundance of the species in plots in the 
cluster of interest divided by the sum of the average abundances in all clusters. 
Calculating the sum of averages is an unusual calculation, but in this case it 
makes the relative abundances independent of cluster size. The second term ( B ip  ) 
is simply the relative frequency of the species in the cluster (Type II fi delity, as 
given earlier). 

 To achieve a maximum indicator value a species must occur in every plot 
assigned to that type and no plots outside the type. Species that are restricted 
to a single type, but which occur in only a subset of the plots assigned to that 
type, are given an indicator value equal to their frequency; species that occur in 
every plot of the type, but which also occur in other types, are assigned an indica-
tor value proportional to their relative average abundance within the type. The 
values are tested for statistical signifi cance by permutation. The IndVal statistic 
attempts to fi nd species that are both necessary and suffi cient (i.e. if you see 
the species you should be in the indicated type, and if you are in the indicated 
type the species should be present). As a comparative metric of overall classifi ca-
tion effi cacy, Dufr ê ne  &  Legendre  (1997)  proposed summing the statistically 
signifi cant indicator values across species, or alternatively counting the number 
of signifi cant indicator species and choosing the partition that maximizes the 
statistic. 

 The dual requirements that indicator species have high frequency in the indi-
cated type and low abundance outside the type bias the IndVal statistic in favour 
of species that occur in the data at a frequency approximately equal to the mean 
cluster size. However, widespread species can have compact, ecologically inform-
ative distributions occurring with high fi delity in pooled types that are adjacent 
along gradients. De C á ceres  et al.   (2010b)  developed a modifi ed IndVal statistic 
that pools types into all possible larger groups and calculates the IndVal statistic 
(as well as the point biserial correlation) for those groups. Species with wider 
niche breadths could, thus, be recognized as indicative of a union of possibly 
several types. 

 Podani  &  Cs á nyi  (2010)  noted that the fi rst term of IndVal ( A ip  ) is independ-
ent of the number of types being considered and represents concentration as 
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opposed to specifi city. They argued that specifi city should consider how many 
types are in the data set and proposed a modifi cation comparing the difference 
of the average abundance of a species in the type minus its average abundance 
in all other types, normalized by the maximum average abundance for the 
species in any type. This has the effect of changing the scale of indicator value 
from [0,1] to [ − 1,1], where species have negative specifi city to types where 
their average abundance is less than their average abundance in all types. Ecolo-
gists have argued for years about whether or not the lack of species can be diag-
nostic, but Podani  &  Cs á nyi note their proposed index is consistent with the 
position of Juh á sz - Nagy  (1964)  that the absence of a ubiquitous species can be 
indicative.   

   2.9    Community  d etermination 

 Determination is the assignment of a plot to an existing type based on compari-
son with the typical composition of candidate types. Determination may be 
absolute (or crisp) where the plot is assigned to only a single type, or fuzzy where 
the plot is given grades of membership in multiple types (De C á ceres  et al.   2009, 
2010a ). The USNVC and VegBank allow fi ve possible levels of determination: 
Absolutely Wrong, Understandable but Wrong, Reasonable or Acceptable Answer, 
Good Answer, and Absolutely Right (Gopal  &  Woodcock  1994 ). Alternatively, 
fuzzy set theory can be employed, where plots are assigned memberships in types 
in the range [0,1], typically where the sum of all memberships must equal one. 
Van Tongeren  et al.   (2008)  rank the potential types in order of fi t from 1 to 10 
whereas De C á ceres  et al.   (2009)  noted fi rst and second best fi t. In a manner 
similar to entitation, determination can be based on either actual compositional 
data or on (dis)similarities calculated among plots, or both. 

 Developing numerical or combinatorial approaches to correct plot assignment 
is exceedingly diffi cult. For large data sets, the number of plots and the number 
of types is large and the dimensionality of the problem is typically very high. 
However, given the importance of developing comprehensive vegetation clas-
sifi cations, efforts to perfect such algorithms will certainly be given high priority 
by vegetation and computer scientists. 

   2.9.1    Expert -  b ased  a pproaches 

 Type membership for plots is often determined by expert opinion. Experienced 
vegetation ecologists employ an understanding of data context and intuitive 
species weighting in selecting the appropriate type for a plot. Often when 
numeric approaches are used, the results are validated using determinations by 
experts (treated as  ‘ truth ’ ). However, as noted by van Tongeren  et al .  (2008) , 
mistaken determination by experts is a source of error unaccounted for in tests 
of numeric methods. Perhaps more importantly, as noted by G é gout  &  Coudun 
 (2012) , given the size of the task of producing national or regional classifi cations, 
there simply aren ’ t enough experts to accomplish the task.  
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   2.9.2    Dichotomous  k eys 

 Dichotomous keys are extremely useful tools for fi eld determination of new plots 
or relev é s, as long as the list of possible types is not too long. Automated pro-
cedures for generating dichotomous keys are available using classifi cation trees 
(Breiman  et al.   1984 ) or random forest classifi ers (Breiman  2001 ) on plot - level 
compositional data. However, given the stochastic nature of species distribu-
tions, dichotomous keys are limited by using the abundance of a single species 
(or a few pooled species) at each decision point, rather than a more synthetic 
perspective. In addition, dichotomous keys (and the differential species identifi ed 
by them) are limited by context. If a type is widespread, then the differential 
species may vary by region, and application of a dichotomous key outside the 
region where the calibration plots were collected may prove highly error - prone. 
Keys must be recognized as useful but fallible tools for narrowing down the list 
of candidate types (Pfi ster  et al .  1977 ; Rodwell  2006 ). Users must still compare 
the composition and environmental attributes of the indicated type and similar 
types to make a clear determination.  

   2.9.3    Numeric  a pproaches 

  Ĉ ern á   &  Chytr ý   (2005)  employed the  Φ  index (see Section  2.8.3 ) in an applica-
tion of neural nets (multilayer perceptron) to predict plot membership in 11  a 
priori  alliances for 4186 relev é s of Czech grasslands. The neural net was fi t to 
a subset of the relev é s (the training set), limited from over - fi tting by another 
subset of relev é s (the selection set) and tested on a third set of relev é s (the test 
set). When the training data set was randomly selected from the pool of relev é s, 
the neural net obtained from 80.1 to 83.0% correct assignment of the test data. 
Surprisingly, when the training data were selected by emphasizing relev é s with 
high numbers of diagnostic species, the accuracy declined to 77.0 – 79.6%.  Ĉ ern á  
 &  Chytr ý  regard the use of neural nets for plot assignment as promising, but 
note that the model is essentially a black box and does not produce keys useful 
for fi eld application. 

 G é gout  &  Coudun  (2012)  also employed the  Φ  index (see Section  2.8.3 ) to 
develop a model for assigning plots to pre - existing types.  Φ  was calculated for 
every species in every type using the data from the original (calibration) plots. 
Then the fi delity of a plot to a type ( F ij  ) was calculated as the mean  Φ  for all 
species in the plot to that type.

   Fij kj

k

n

=
=

∑Φ /n
1

  

 This fi delity was compared to the mean fi delity of all plots used to defi ne 
that type.  

   A F F s Fij ij j j= −( ) ( )/  
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  where  A ij      =    the affi nity of plot  i  to type  j ,   Fj is the mean fi delity for all plots in 
type  j , and  s ( F j  ) is the standard deviation of  F j  . Plots were assigned to the type 
for which they had the highest affi nity. There was a 60% agreement of assign-
ment to type compared to assignment by phytosociological experts on the cali-
bration plots. For 800 plots independent of those used to defi ne the types, 
agreement with expert assignment dropped to 47%. 

 Van Tongeren  et al .  (2008)  developed a numerical determination approach 
called ASSOCIA based on a composite index combining presence/absence data 
and abundance data using weighted averaging. For the presence/absence data the 
deviance ( − 2 ln(likelihood)) associated with plot membership of a plot to a type 
is calculated for all possible types. For the abundance data a modifi ed Euclidean 
distance is calculated from the plot to the centroid of all types. This approach 
has the signifi cant advantage that it can employ synoptic tables, as opposed to 
full plot - level data, thus allowing comparisons to published classifi cations where 
the raw data are not available. 

 De C á ceres  et al.   (2009, 2010a)  explored fuzzy approaches to determination. 
While the fuzzy classifi ers performed well in general, they proved susceptible to 
poorly defi ned types in the set of possible choices, and differed in their response 
to outliers as opposed to intermediate plots.   

   2.10    Classifi cation  i ntegration 

 With the growing importance of large, comprehensive classifi cation systems 
such as that of the Braun - Blanquet system and the USNVC, it is critical that 
new classifi cation work be integrated into a broader framework. Addition-
ally, existing classifi cations need to be reconciled to achieve a consistent, com-
prehensive system (Bruelheide  &  Chytr ý   2000 ; De C á ceres  &  Wiser  2012 ). 
There are signifi cant challenges to achieving such integration. There are four 
components to managing classifi cations (De C á ceres  et al.   2010a ): (1) assigning 
new relev é  data into existing types; (2) updating the types to refl ect the 
additional data; (3) defi ning new types for plots that don ’ t fi t the current 
classifi cation; (4) reconciling and validating the modifi ed classifi cations. De 
C á ceres  &  Wiser  (2012)  provide guidelines to ensure that the products of vegeta-
tion classifi cation efforts can be integrated into broader classifi cation frame-
works, modifi ed and extended in the future, and can be used to communicate 
information about vegetation stands beyond those included in the original 
analysis. 

 Here is a simple overview of the problem of integration. If all of the vegeta-
tion plots that are characteristic of a classifi cation unit under one system (say A) 
would be assigned to a single classifi cation unit of another system (say B), we 
will say that the relationship (or mapping) is one - to - one. If, however, plots that 
defi ne a type in classifi cation A would be assigned to more than one type in 
classifi cation B, we will say the mapping is one - to - many. If the mapping is one -
 to - many in both directions, then the classifi cations are signifi cantly different and 
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reconciliation will be diffi cult for the same reasons as mapping of taxonomic 
concepts for plants is challenging. 

   2.10.1    Classifi cation  r esolution 

 Most vegetation classifi cations are hierarchical with lower levels nested into 
broader types. It makes sense to begin the discussion of classifi cation integration 
at the lowest practical level, the association, as upper levels are often defi ned in 
terms of their component lower units (but see the USNVC for a combined 
bottom - up and top - down system). We refer to the heterogeneity of vegetation 
within an association (how fi nely divided into types the vegetation is) as classi-
fi cation resolution. If classifi cations to be reconciled differ signifi cantly in resolu-
tion, then a one - to - one correspondence cannot be established. The best case is 
that in one direction the mapping is one - to - many and in the reverse direction 
it is one - to - one; in this case one - to - one mapping may still be achieved by 
lumping the more fi nely resolved types or splitting the more coarsely resolved 
types. Given a standard defi nition for intra - association heterogeneity, this 
would be a simple decision. However, no standard currently exists (although 
Mueller - Dombois  &  Ellenberg  1974  suggested that all plots within an associa-
tion should have a Jaccard ’ s similarity index of at least 25% to the typal plot). 
The variability in association resolution across classifi cations could be used to 
guide this decision.  

   2.10.2    Classifi cation  a lignment,  p recedence and  c ontinuity 

 Even given similar levels of classifi cation resolution between two adjoining clas-
sifi cations, it is likely that the classifi cations will still exhibit one - to - many rela-
tionships in both directions. Recurrent patterns of vegetation composition 
(associations) are determined in part by the pattern of landscapes acting on the 
regional species pool (Austin  &  Smith  1989 ). In an adjoining region, differences 
in these landscape patterns may create different recurring community patterns 
from the same species pool. In these cases it may be necessary to pool the plot 
data from both areas and seek new associations that better represent the larger -
 scaled pattern of community composition and distribution. Similarly, a detailed 
study of a narrowly circumscribed geographic region (perhaps a national park) 
may yield an intuitively very satisfying classifi cation that does not map well onto 
a geographically broad classifi cation (say one for all of Europe or the USA). In 
these cases is will be necessary to be cautious in proposing changes in the larger -
 scale classifi cations so as to avoid disharmonies in application of the classifi cation 
in other regions. 

 Vegetation classifi cations represent signifi cant scientifi c achievements often 
accomplished by a large number of people over a long period of time. Much of 
the utility of the classifi cation, however, is tied to the information content of the 
classes. Often important ancillary information on productivity, animal habitat 
suitability, conservation priority and hazards are associated with each unit in the 
classifi cation by accumulated experience or specifi c monitoring or research 
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programmes. Maps of classifi cation unit distribution may feature prominently in 
land - management activities. Signifi cant revisions of existing classifi cations run 
the risk of making such information obsolete. Accordingly, while new methods 
or new data or the desire to reconcile with adjacent areas sometimes lead to 
revised classifi cations, this should be done sparingly. At a minimum, considerable 
effort should be given to documenting the mapping from old types to new 
(Section  2.10.3 ).  

   2.10.3    Cross -  r eferencing  c lassifi cations 

 An alternative approach to aggregating classifi cations into new systems is to 
develop a formal cross - referencing system that identifi es synonymy among clas-
sifi cations. One approach is a set theoretic system that follows the international 
standard for taxonomic mapping (TDWG  2005 ) in defi ning the relationship of 
each type in one classifi cation with each type in another as: (1) is congruent, (2) 
is contained in, (3) contains, (4) intersects with, or (5) is disjunct from, as is 
implemented for community classifi cation in the VegBank archive (Peet  et al.  
 2012 ). By knowing the relationship of a type in one classifi cation to all types in 
another classifi cation it is possible to erect higher - order relationships by network 
algorithms. Such an approach preserves the ancillary information associated with 
types in legacy classifi cations and minimizes unnecessary dynamics in the larger 
classifi cation enterprise. On the other hand, it imposes additional complexity on 
regional efforts.  

   2.10.4    Nomenclature 

 Each of the major vegetation classifi cation systems has its own nomenclatural 
rules. The best established and most detailed is the International Code of Phy-
tosociological Nomenclature, which applies to units in the Braun - Blanquet 
system (Weber  et al.   2000 ) and is maintained by the International Association 
for Vegetation Science. This system is modelled after the nomenclature rules for 
plant taxa (Dengler  et al.   2008 ). Among several names for a syntaxon, the oldest 
validly published name has priority, and each syntaxon name is connected to a 
nomenclatural type (a single plot for associations, or a validly described lower -
 rank syntaxon in the case of a higher syntaxa), which determines the usage of 
the name. Syntaxon names are based on the scientifi c names of one or two plant 
species or infraspecifi c taxa that usually are characteristic in the particular vegeta-
tion type. An  ‘ author citation ’  (i.e. the author(s) and year of the fi rst valid pub-
lication) also forms part of the complete syntaxon name. 

 The USNVC ( http://usnvc.org ) has less formal naming rules. Each association 
and alliance is assigned a scientifi c name based on the names of plant species 
that occur in the type (Jennings  et al.   2009 ). Dominant and diagnostic taxa are 
used in naming a type and are derived from the tabular summaries of the type. 
The number of species names in the name can vary from one to fi ve, with those 
predominantly in the same stratum separated by a hyphen ( - ), and those pre-
dominantly in different strata separated by a slash (/). Association or alliance 
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names include the term Association or Alliance as part of the name to indicate 
the level of the type in the hierarchy, as well as a descriptive physiognomic term, 
such as forest or grassland.   

   2.11    Documentation 

   2.11.1    Publication 

 Publication is critical for disseminating the results of vegetation classifi cation 
research, though it plays different roles in different classifi cation systems. In the 
Braun - Blanquet system, vegetation types are defi ned in publications, much as 
species are. Typically, these publications contain synoptic tables with species as 
rows and communities as columns. For classifi cation publications constructed 
outside the framework of the Braun - Blanquet system, tabular summaries are 
still important, but less emphasis is placed on sorting or identifi cation of diag-
nostic species. More typically, the most characteristic species are indicated. One 
effective manner of doing this is by including only the prevalent species, defi ned 
as the  ‘  n  ’  most frequent species, where  ‘  n  ’  is the average number of species 
per plot (Curtis  1959 ). In addition, it is common to fl ag the species with high 
indicator value as defi ned by some standard metric, such as that of Dufr ê ne  &  
Legendre  (1997) .  

   2.11.2    Plot  a rchives 

 With the advent of inexpensive digital archiving of data and widespread access 
to digital archives over the web, there is a growing expectation that key original 
data will be made available in permanent public archives (Jones  et al.   2006 ; 
Vision  2010 ). As a consequence, analyses can now be redone with expanded 
data sets or with different methodologies, and new questions can be asked 
through use of large quantities of available data. This trend toward archiving 
original data is particularly important for vegetation classifi cation initiatives. 
Large national and multinational classifi cations need to evolve, and this is only 
possible if plots records are permanently archived, much like systematics depends 
on museum collections that have been examined and determined by a series of 
monographers. The USNVC now requires that plot data used to advance the 
classifi cation be made available in public archives. Already in excess of 2.4 
million vegetation plots are reported in the Global Index of Vegetation Databases 
(GIVD; Dengler  et al.   2011 ), a signifi cant proportion of which is publicly 
available. 

 Key to effi cient reuse of data is that the records conform to some standardized 
format. The widespread use of TurboVeg (Hennekens  &  Schamin é e  2001 ) as a 
database for plots consistent with the Braun - Blanquet approach has meant that 
millions of plots can be exchanged in an effi cient manner. However, TurboVeg 
supports only a limited range of plot types and formats. To solve this problem, 
Veg - X has been proposed as an international data exchange standard for vegeta-
tion plots of nearly all formats (Wiser  et al.   2011 ). Widespread application of 
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the Veg - X format would greatly simplify both sharing of data and ease of appli-
cation of software tools.   

   2.12    Future  d irections and  c hallenges 

 Given the pressing need for documenting and monitoring the Earth ’ s biodi-
versity and for providing context for broader ecological research, vegetation 
classifi cation has received increasing attention in recent decades in both academic 
ecology and across a broad range of user communities. This new and broader 
set of applications also suggests that we need to move beyond individual and 
idiosyncratic classifi cations toward large, consensus classifi cations that combine 
the effort of many persons to produce and maintain a unifi ed and comprehensive 
whole, subject to revision in an open and transparent manner. Toward this 
end, individual workers should conform to established standards for collecting 
and archiving plot data. Not only will this signifi cantly advance vegetation clas-
sifi cation, but it will also facilitate future international collaboration and 
synthesis. 

 Computer databases and numerical approaches will become increasingly 
important for developing large consensus classifi cations. While a single preferred 
protocol is unlikely to emerge, increased testing of competing approaches on 
large regional or national classifi cations should provide insights into the task -
 specifi c utility of each approach. Transparent algorithms should be strongly 
preferred, although the specifi c nature of vegetation research means that special -
 purpose software may still be required. As emphasized by De C á ceres  &  Wiser 
 (2012) , formal rules for assigning plot data to specifi c types will play an increas-
ingly important role. 

 Vegetation scientists need access to the data used in vegetation classifi cations. 
Numerous plot databases currently exist (Dengler  et al.   2011 ), and progress is 
being made on data transfer protocols that will facilitate access to and utility of 
such data (Wiser  et al.   2011 ). The development of better tools for managing and 
analysing the massive vegetation data sets anticipated in future classifi cation 
efforts is an area of active research and development. 

 The greatest future challenge may be integrating the numerous existing clas-
sifi cations into a comprehensive system. The USNVC includes a peer review 
protocol for modifying the classifi cation. Ironically, the USA may benefi t in this 
effort from the historical lack of emphasis on vegetation classifi cation in North 
America, beginning from almost a clean slate. The long legacy of vegetation 
classifi cation in Europe means that many more vegetation types are formally 
recognized. Thus, reconciliation of existing classifi cations will play a much larger 
role in Europe than in the USA. 

 Vegetation is complex and dynamic and efforts to characterize it in a formal 
structure are inherently problematic. Nonetheless, identifying those problem 
areas focuses the efforts of vegetation science into new research areas of interest 
to a broad range of scientists in complexity science, database design, multivariate 
analysis, expert systems and many other fi elds.  
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