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rotation is also involved and whether
any other motor proteins play a role.
In the developing mouse brain, the
SUN–KASH complexes also interact
with the kinesin complex as well as
dynein [10], but a prominent role of
kinesin in neuronal migration has not
been clearly demonstrated.

Interkinetic nuclear migration (INM)
during vertebrate neurogenesis is
currently another active research area
where the roles of different motor
proteins need to be clarified [17].
During INM, the nucleus moves away
from the centrosome during G1 phase
and migrates back toward the
centrosome during G2 phase after DNA
synthesis. Kinesin and dynein have
been proposed to drive the nuclear
migration processes during G1 and G2
phases, respectively [3], and the KASH
protein Syne-2/nesprin-2 has been
shown to interact with both kinesin and
dynein in the developing mouse brain
[10]. In the zebrafish retina, myosinII
and dynactin have been suggested to
provide the major force for INM [18,19].
Furthermore, Syne-2/nesprin-2 has
been shown to connect the nucleus to
the flowing actin and thus move the
nucleus after wounding in tissue
culture cells [20]. Thus, it would be
worthwhile to investigate the detailed
mechanism of how the microtubules
and actin filaments are organized in the
neuronal progenitors. Which
cytoskeletal component is essential for
providing the driving force for nuclear
migration during G1 and G2 phase?
Do noncentrosomal microtubule arrays
exist? Do different combinations of
motors, such as dynein, kinesin and
myosinII, function together to move the
nucleus through cytoplasmic obstacles
during INM? How does Syne-2/
nesprin-2 coordinate its interactions
between dynein, kinesin and actin?
These questions could be addressed
by combining high-resolution imaging
techniques and genetic manipulation,
as demonstrated in the new work by
Fridolfsson and Starr [5].
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Asymmetric Cell Division: A New Way
to Divide Unequally
It has long been known that cells can divide unequally by shifting the mitotic
spindle to one side. Two recent reports identify an alternative way to generate
daughter cells of different sizes.
Christopher D. Higgins
and Bob Goldstein*

All good cell biologists know that the
mitotic spindle determines the plane
of cytokinesis. Ray Rappaport, the
godfather of cytokinesis [1], showed
that experimentally moving a spindle
could change the site of cytokinesis [2],
and cytokinesis can be prevented by
removing the spindle from a cell at least
a few minutes before the cytokinetic
furrow normally forms [3,4]. Recent
work has begun to outline amechanism
for the furrow-inducing activity of the
mitotic spindle.Astralmicrotubules and
midzone microtubules affect myosin
distribution and actin architecture
through local RhoA activation and Rac
inactivation at the equatorial cortex,
where the actin and myosin will form
a contractile ‘purse string’ [5–7]. In
nearly all cells, the spatial relationship
between the spindle and the
actomyosin-rich furrow is consistent
with the above causal relationships: the
spindle’s position predicts accurately
where furrowing will occur.



Myosin CALI
Fly neuroblast or

worm QR.a
Rappaports’
conical cellTypical cell

M
yo

si
n

, c
en

tr
o

so
m

es
at

 a
n

ap
h

as
e

S
ym

m
et

ry
 a

t
cy

to
ki

n
es

is
 

No centrosomes  

Current Biology

Figure 1. Asymmetric cortical myosin in mitotic cells can position the cytokinetic furrow asym-
metrically.

Diagram of myosin and spindle pole (centrosome) positions at anaphase (top), and the result-
ing cytokinetic furrow position (bottom). Thicker regions of myosin represent cortical regions
with myosin enrichment.
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Figure 2. A proposed mechanism for asym-
metric furrow positioning.

Model proposing how an asymmetric myosin
crescent can affect daughter cell size (after
[10]). Arrows represent actomyosin-driven
contractions shrinking one end of the cell
during cytokinesis.
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However, exceptions exist. In 2000,
Kaltschmidt and colleagues [8]
reported live imaging of microtubules
in Drosophila neuroblasts and showed
a cell division plane that did not lie
midway between the two spindle poles,
but instead lay closer to one of the
poles, resulting in daughter cells of
two different sizes. Now a new report
from Cabernard and colleagues [9]
provides evidence that the furrow
can be positioned independently
of the spindle in these neuroblasts,
by a mechanism that involves an
asymmetric enrichment of cortical
myosin in mitotic cells. A second report
from Ou and colleagues [10] reports
a similar mechanism in another system,
a Caenorhabditis elegans neuroblast,
and tests directly the role of
asymmetric myosin enrichment in
controlling daughter cell size. The new
results challenge the universality of
the mitotic spindle as the primary
determinant of furrow positioning,
establishing an asymmetric cortical
enrichment of myosin during mitosis
as an alternative means to divide
unequally in some cells.

Drosophila neuroblasts divide
asymmetrically, producing a larger
daughter that retains stem-cell
characteristics and a smaller daughter
that differentiates. Cabernard and
colleagues [9] showed by live imaging
of neuroblasts that myosin localized in
an unexpected pattern during mitosis,
becoming enriched asymmetrically
in the cell cortex on the side where
the smaller daughter cell will form
(Figure 1). Interestingly, this enrichment
was established even before any
mitotic spindle asymmetries were
apparent, suggesting that the myosin
asymmetry was not caused by any
observed spindle asymmetries.
Indeed, cells with spindles rotated
out of their normal axis still had normal
myosin enrichment on the basal side
of the cell. The rotated spindle and the
basal myosin each appeared to induce
a furrow— a double furrow! What does
it mean? In Drosophila neuroblasts,
the myosin crescent appears to
provide an independent, parallel
mechanism for cleavage furrow
positioning, along with canonical
spindle-derived cues.

Ou and colleagues [10] investigated
the asymmetric division of another cell,
a C. elegans neuroblast. Division of
a particular neuroblast, called QR.a,
produces daughter cells of different
sizes and fates, with the larger
daughter becoming a neuron, and
the smaller daughter undergoing
apoptosis. Despite this asymmetry
of size and fate, the mitotic spindle
of this cell is aligned in the center at
metaphase, just as in Drosophila
neuroblasts [8,10]. And just as in
Drosophila neuroblasts, the authors
show that myosin becomes enriched
asymmetrically in the cortex of one side
of the cell during anaphase, on the side
that will form the smaller daughter cell.
Ou et al. [10] propose a mechanism

for how asymmetric myosin might drive
unequal cell division: cortical
contractility driven by the myosin
crescent could shrink one hemisphere
of the dividing cell, driving cytoplasmic
flow through the ingressing cleavage
furrow and resulting in two differently-
sized daughter cells (Figure 2). To test
myosin’s role in specific regions of the
cell, they used chromophore-assisted
laser inactivation (CALI), a technique
that uses reactive products emitted
upon fluorophore excitation to locally
inactivate proteins [11–13]. They found
that CALI of GFP–myosin in the region
where it is enriched could prevent that
side of the dividing cell from shrinking
normally, leading in some cases to
equal cell division (Figure 1), whereas
CALI of a control GFP-taggedmolecule
could not. Interestingly, in some cases
in which daughter cell size was
affected, cell fate was also affected.
The results show that asymmetric
enrichment of myosin in mitosis can
locally affect the size and the fate
of a nascent daughter cell.
With mitotic cells constricted at one

end by cortical actomyosin-derived
forces, the resulting cell shape
resembles one of the classic
Rappaport experiments. After his
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retirement as a professor, Ray
Rappaport and his wife Barbara, both
in their 70s at the time, published
a paper in which they reported the
effect of squeezing mitotic cells into
conical shapes [14]. Why squeeze cells
into conical shapes? A computermodel
developed by Albert Harris and Sally
Gewalt had predicted that cells of this
shape could be used to distinguish
between existing models for spindle
positioning [15]. Interestingly, the result
of changing cell shape was similar
to that shown in worm and fly
neuroblasts: the furrow formed closer
to the narrow end of the cell, instead
of midway between the two spindle
poles (Figure 1). The authors
interpreted this as resulting from
a more effective interaction between
the spindle and the cortex at the narrow
end of the cell, as the cortex in this
end of the cell lies closer to the spindle.

The Rappaports’ result shows that
tapering one end of a cell can result in
the furrow forming closer to the spindle
pole at that end of the cell. Might the
asymmetric myosin observed in worm
and fly neuroblasts affect furrow
position in this way? Myosin is itself
a key furrow component, so an indirect
effect of myosin on furrow positioning
through cell shape — allowing the
spindle and cortex to more effectively
interact at one end of the cell — might
seem circuitous. Indeed, in fly
neuroblasts, Cabernard et al. [9] were
able to eliminate the spindle altogether
by colcemid treatment and then
genetically bypass the spindle
checkpoint, and they found that the
basal myosin enrichment and
asymmetric cytokinesis still occurred.
This result establishes the new
mechanism as a truly independent
mechanism, not requiring the mitotic
spindle. It will be interesting to learn
the extent to which this will stand as
an independent mechanism in other
systems.

How does myosin localize
asymmetrically in mitotic cells?
Temporal and spatial mechanisms
must be involved. Metaphase-arrested
Drosophila neuroblasts failed to
localize myosin asymmetrically,
suggesting that myosin localization
must be temporally linked to mitotic
progression, like asymmetric spindle
positioning in certain cells [9,16]. The
authors show that spatial regulation
of myosin depends on familiar players,
a PAR-1-like kinase called PIG-1 in
C. elegans neuroblasts, and the
asymmetric Pins protein in Drosophila,
which has well-established roles in
spindle positioning [9,10,16–18].
Thesemolecular links are likely to serve
as key steps toward dissecting the
mechanisms of asymmetric myosin
distribution in mitotic cells.
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