The effects of resource availability and environmental conditions on genetic rankings for carbon isotope discrimination during growth in tomato and rice.

Jonathan P. Comstock
Susan R. McCouch
Bjorn C. Martin
Charles G. Tauer
Todd J. Vision
Yunbi Xu
Roman C. Pausch

1Department of Plant Breeding, Cornell University, Ithaca, NY 14853
2Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078
3Department of Forestry, Oklahoma State University, Stillwater, OK 74078
4Department of Biology, University of North Carolina, Campus Box 3280 Chapel Hill, North Carolina 27599
5Boyce Thompson Institute for Plant Research at Cornell University, Ithaca, NY 14853

Running head: Environmental stability of water use efficiency setpoints

Corresponding author:

Jonathan P. Comstock
Department of Plant Breeding
Cornell University
Ithaca, NY 14853-1901
Email JPC8@cornell.edu
fax (607)254-1242
phone (607)254-1380
Abstract

Carbon isotope discrimination (Δ) is frequently used as an index of leaf intercellular CO₂ concentration (cᵢ) and variation in photosynthetic water use efficiency. In this study, the stability of Δ was evaluated in greenhouse grown tomato and rice with respect to variable growth conditions including temperature, nutrient availability, soil flooding (in rice), irradiance, and root constriction in small soil volumes. Δ exhibited several characteristics indicative of contrasting set-point behavior among genotypes of both crops. These included generally small main environmental effects and lower observed levels of G x E interaction across the diverse treatments than observed in associated measures of relative growth rate, photosynthetic rate, biomass allocation pattern, or specific leaf area. Growth irradiance stood out among environmental parameters tested as having consistently large main affects on Δ for all genotypes screened in both crops. We suggest that this may be related to contrasting mechanisms of stomatal aperture modulation associated with the different environmental variables. For temperature and nutrient availability, feedback processes directly linked to cᵢ and/or metabolite pools associated with cᵢ may have played the primary role in coordinating stomatal conductance and photosynthetic capacity. In contrast, light has a direct effect on stomatal aperture in addition to feedback mediated through cᵢ.
Introduction

Plant photosynthetic water use efficiency (WUE), defined here as the ratio of carbon assimilation (A) and transpiration (E) rates, is an important ecological and agronomic trait. It can affect plant performance not only when water is a limiting environmental resource, but also when the physiological costs of water uptake and transport limit stomatal opening (Comstock 2002; Sperry, Hacke et al. 2002). Both natural plant populations and crop varieties show a considerable range of genetically heritable differences in WUE (Geber and Dawson 1997; Richards, Rebetzke et al. 2002). These contrasts may reflect variable past selection for efficient resource use under water limited conditions, contrasting cost/benefit relationships between WUE and plant capacities for water, carbon, and nutrient uptake in different genetic backgrounds, weakly regulated differences resulting from independent factors affecting the separate behaviors of stomatal opening and the development of photosynthetic capacity. The lability of WUE under contrasting environmental conditions might also be affected by variation in the relative importance of these underlying selective pressures.

Both A and E can be defined at the leaf surface as gaseous fluxes occurring through the same diffusion pathway via the stomatal pores. Due to the common pathway, the flux ratio is proportional to the ratio of the respective diffusion gradients between the surrounding atmosphere and intercellular leaf spaces:

$$\text{WUE} = \frac{A}{E} = \frac{g_{\text{CO}_2}(c_a - c_i)}{g_{\text{H}_2\text{O}}(w_i - w_a)} = \frac{c_a - c_i}{1.6(w_i - w_a)}$$  

Eq. 1
where $c$ and $w$ refer to concentrations of CO$_2$ and H$_2$O, respectively, subscripts $i$ and $a$ refer to intercellular and ambient atmospheric pools, respectively, $g_{CO_2}$ and $g_{H_2O}$ are the stomatal conductances to CO$_2$ and H$_2$O, respectively, and 1.6 is the ratio of molecular diffusivity of the two gases in air. The $c_i$ is determined by photosynthetic physiology as discussed below, and $w_i$ increases geometrically with leaf temperature.

Some broad limitations are implied by Eq. 1, in that WUE of the photosynthetic process can only be improved within the limitations of an effective diffusion gradient in CO$_2$. High WUE requires a low $c_i$, which contributes to a potential substrate limitation of the primary photosynthetic carboxylation reaction catalyzed by RuBP Carboxylase (Rubisco). This limitation results in a strong correlation between maximal stomatal conductance and maximum photosynthetic rate in plants (Wong, Cowan et al. 1979) (Korner, Scheel et al. 1979). Due to the high concentration of Rubisco in leaves, there is an expected trade-off between WUE and photosynthetic nitrogen-use efficiency (NUE), and a potential depression of $A$ and growth if $c_i$ is excessively low and nitrogen is limiting to growth. There are also potential advantages of high WUE to productivity, however, both when total water availability is limiting over the season, and when the costs of water transport within the plant are substantial. The magnitude of the difference between $c_a$ and $c_i$ is known to vary up to three-fold among highly productive wild species and some crops even under well-watered conditions (Franks and Farquhar 1999; Larcher 1995; Turner 1993).
The $c_i$ is sometimes referred to as ‘intrinsic’ water use efficiency. It is the parameter in Eq. 1 over which plants have the most direct control by modulating the coregulation of stomatal conductance and carboxylation capacity (Eq. 2), and also reflects the potential trade-offs between WUE and NUE discussed above.

$$c_i = c_a - \frac{A}{g_{co2}} \quad \text{Eq. 2}$$

A useful proxy to allow high-throughput screening for intrinsic WUE in $C_3$ plants is variation in carbon isotope discrimination ($\Delta$). Atmospheric carbon dioxide is naturally composed of two stable isotopes, $^{13}\text{C}$ and $^{12}\text{C}$. During photosynthesis, the lighter isotope is taken up at slightly faster rates, leading to a process of isotopic discrimination. For $C_3$ plants, the change in the abundance ratio of $^{13}\text{C}/^{12}\text{C}$ between plant biomass and the atmospheric carbon source generally follows the simplified relationship

$$\Delta = a + (b - a) \frac{c_i}{c_a} \quad \text{Eq. 3}$$

where $a$ and $b$ are discrimination constants associated with CO$_2$ diffusion in air and the carboxylation reactions in the leaf, respectively, with values of 4.4 and 27 per mil (‰), respectively. The dependency of $\Delta$ on the $c_i/c_a$ ratio leads to its expected negative correlation with WUE (Farquhar, Ehleringer et al. 1989). There is extensive variation in $\Delta$ among different $C_3$ plant genotypes (Brugnoli and Farquhar 1999). While several potential factors can contribute to this, the most dominant source of variation is the ratio
of stomatal conductance relative to internal photosynthetic capacity, which determines $c_i$. $\Delta$ is low when diffusion is more rate limiting, and high when carboxylation capacity is more limiting.

$\Delta$ is known to vary at times with environmental conditions as well as genetic differences. For example, $\Delta$ tends to be lower at high light (Carelli, Fahl et al. 1999; Ehleringer, Field et al. 1986; Hanba, Mori et al. 1997), low relative humidity (Barbour and Farquhar 2000; Madhavan, Treichel et al. 1991; Sanchez Diaz, Garcia et al. 2002), and under drought conditions (Cabuslay, Ito et al. 2002), and may show variable responses to factors such as nutrient conditions and temperature (Brueck, Jureit et al. 2001; Craufurd, Wheeler et al. 1999; Guo, Brueck et al. 2002; Hamerlynck, Huxman et al. 2004; Morecroft and Woodward 1996). Nonetheless, environmental factors often show consistent effects across a wide array of genotypes, and numerous studies have reported non-significant or low genotype-by-environment interactions (G x E) in field trials that include multiple year, plot and watering treatments (Hall, Thiaw et al. 1994; Hubick, Shorter et al. 1988; Le Roux, Stock et al. 1996; Livingston, Guy et al. 1999; Merah, Monneveux et al. 1999; Pennington, Tischler et al. 1999). Only a few studies have found larger G x E (Cregg, Olivas Garcia et al. 2000; Ponton, Dupouey et al. 2002). In field-grown barley, Teulat et al. (2002) described ten significant quantitative trait loci (QTL) contributing to variation in $\Delta$. Over half of the QTL exhibited main effects across multiple environments, two had effects in only one environment, and only two showed QTL by environment interaction.
Here we test the hypothesis that $\Delta$ primarily reflects an intrinsic set-point in the coregulation of stomatal conductance and carbon assimilation. This hypothesis predicts that 1) genetic rankings for $\Delta$ should show minimal G x E interaction regardless of the nature of environmental perturbation, and 2) this should contrast with underlying characters of carboxylation capacity, leaf morphology, and stomatal behavior, which may show genotype specific patterns of complementary environmental response resulting in stable $\Delta$. We focused on factors that could dramatically affect the regulatory balance between carboxylation capacity and stomatal conductance in well-watered plants but we excluded stress responses to drought or extreme conditions. In particular, we evaluated responses to 1) growth temperature, which has effects on carboxylation capacity above and below the photosynthetic temperature optimum as well as geometrically increasing transpiration potential with increasing leaf temperature, 2) nutrient availability, which affects carboxylation capacity through leaf protein content but has no inherent effect on $E$, 3) irradiance level, which affects electron-transport limited carboxylation rates, and 4) soil conditions such as medium and water saturation. Since this study was conducted in greenhouses, we also evaluated the response to soil volume/root constriction and the interactions of soil volume with plant size and age.

We chose to study two crop systems, tomato (Solanum lycopersicum L.) and rice (Oryza sativa L.). The two crops share numerous strengths as experimental systems, including well-developed genomics tools (Goff, Ricke et al. 2002) (Budiman, Mao et al. 2000; Van der Hoeven, Ronning et al. 2002) and a history of work in water-relations (Dingkuhn, Cruz et al. 1991; Martin, Nienhuis et al. 1989; Martin, Tauer et al. 1999) (Stiller, Lafitte et al. 2003), but also provide strong contrasts. These include phylogenetic divergence
(eudicot versus monocot) and an annual desert versus a perennial wetland ancestor for
tomato and rice, respectively. There are well-characterized, permanent mapping
populations derived from crosses between cultivated tomato and related wild species of
Solanum (Eshed and Zamir 1994; Monforte and Tanksley 2000), some of which are
known from past studies to express higher WUE than the cultivated tomato (Martin,
Nienhuis et al. 1989). Rice shows tremendous ecological amplitude in both temperate
and tropical climates with adaptation to a wide range of cultivation conditions, from
flooded soil and paddies to dry upland fields. Genetic tools and stable mapping
populations for exploring these contrasts are readily available (Huang, Parco et al. 1997;
Ishimaru, Yano et al. 2001; Lin, Sasaki et al. 1998).

Methods and materials

Plant materials

Tomato genotypes included two cultivars, Solanum lycopersicum (L.) E6203 and S.
lycopersicum (L.) M82, and single genotypes of two related wild species, S. pennellii
(Cor.) D'Arcy accession LA716 and S. hirsutum accession LA1777. Rice genotypes
included several cultivars of Oryza sativa L, Nipponbare (temperate japonica), Azucena
(tropical japonica), Jefferson (tropical japonica), Kasalath (aus), Teqing (indica), and
IR64 (indica), as well as one accession of the putative wild ancestor, O. rufipogon
IRGC#105491).
**Growth conditions**

All plants were grown in a glasshouse environment with controlled temperature, humidity, and supplemental high intensity discharge (HID) lighting (a bank of alternating 1000W Na-vapor and Me-Halide lamps) at the Boyce Thompson Institute for Plant Research on the Cornell University campus in Ithaca, New York. Plants were monitored during growth for mean photosynthetically active radiation (400-700nm; PAR), temperature, humidity, and ambient [CO$_2$] within each greenhouse bay. Data were collected every 30 seconds throughout plant growth and averaged in 30 minute intervals by a CR10 Datalogger (Campbell Scientific). Greenhouse air samples from different greenhouse bays were pumped in repeating sequence to a single Infrared gas analyzer (LICOR Gas-Hound) for assessment of [CO$_2$]. The analyzer cycled through a full set of comparative samples from each greenhouse every 3 minutes. These readings were accumulated by the same datalogger system mentioned above and converted to independent averages of each greenhouse at 30 minute intervals. Monitored environmental data is given for each experiment in Table 1.

**Irradiance**

Attempts were made to standardize total irradiance levels across experiments. However, natural sunlight differed dramatically seasonally, and some variation in combined totals was observed despite compensatory adjustments in HID lamp arrangement (Table 1). Values given (Table 1) are total photoperiod averages and include considerable diurnal variation. Typical irradiance was 500-600 µmol m$^{-2}$ s$^{-1}$ PAR during the earliest morning
and latest evening hours (largely from HID sources) and above 1000 µmol m\(^{-2}\) s\(^{-1}\) PAR at midday. This ensured 90% or greater photosynthetic light saturation for a substantial portion of each day. Where variation in PAR is presented as an experimental treatment it represents variation in HID intensity.

*Soil volume*

Unless otherwise indicated, plants were grown to measurement age at 3 to 4 weeks past germination in 0.14 m diameter pots with 2.5 L soil volume. Two reported experiments, however, specifically explore variation in soil volume associated with pot size. The study reported in the section on ‘Plant age and soil volume’ used pot diameters of 0.05, 0.07, 0.14, 0.25 and 0.36 m, with soil volumes of 0.33, 0.30, 2.5, 20.0, and 35.0 L, respectively. The two smallest volumes contrasted a tall, narrow ‘cone-tainer’ with a shorter and broader pot differing greatly in width to depth ratio, but not in volume. Data presented on the interaction of soil volume and fertilizer had pots with diameters of 0.07, 0.08, and 0.14 m and soil volumes of 0.3, 0.8, and 2.5 L, respectively.

*Soil media and fertilization*

Three potting soil mixes were used: (1) *mineral soil mix*: 3:1:1 fritted clay:sand:topsoil (screened and pasteurized) with dolomitic lime, gypsum, superphosphate, and a micronutrient supplement (Micromax Plus, Scotts Co.) added as amendments at rates of 2.7, 4.5, 1.1, and 0.85 kg m\(^{-3}\), respectively. This mix could be fully washed from root
systems and was used whenever root harvests were planned. (2) tomato mix: 2:1:1:1 vermiculite:peat:sand:perlite with dolomitic lime and micronutrient supplement (Unimix III, Scotts Co.) added as amendments at rates of 2.7 and 0.64 kg m$^{-3}$, respectively. (3) rice mix: 6:3:3:1:1 vermiculite: peat: fritted clay: sand: topsoil and with dolomitic lime, gypsum, superphosphate, and two micronutrient supplements (Unimix III and Micromax Plus) added as amendments at rates of 3.9, 1.5, 0.38, 0.71 and 0.28 kg m$^{-3}$, respectively.

Tomatoes were grown at all times in a manner fostering fully aerobic soil conditions. Rice was grown with two soil management regimes, one with well-drained aerobic soil watered daily or as needed to prevent moisture stress, and another with flooded, anaerobic soil conditions generated by submerging the bottom 25% of the soil profile (18 cm total height) in trays of standing water (usually four 1.1 L pots per tray). The wicking of moisture in these short soil profiles resulted in saturated conditions up to the soil surface. Unless otherwise noted, plants were fertilized once every other day beginning one week after germination. Tomatoes received Peters Excel 15:5:15 at a concentration providing 100 µg g$^{-1}$ N, and rice with Peters 20:10:20 and an iron chelate (Sprint 330, Becker Underwood Inc.) applied at a concentration giving 100 µg g$^{-1}$ available nitrogen and 0.45 g L$^{-1}$ chelate.

Isotopic analyses

$\Delta$ was evaluated at the Cornell Stable Isotope Laboratory (COIL) using a Finnigan Matt Delta Plus isotope ratio mass spectrometer (IRMS). Isotope ratio data were provided by COIL relative to the IAEA standard PDB, as:
\[ \delta^{13}C = \left( \frac{^{13}C_{\text{sample}}}{^{13}C_{\text{standard}}} - 1 \right) \times 1000, \% \quad \text{Eq. 4} \]

\[ \delta^{13}C \text{ was measured for plant samples, and } \Delta \text{ was calculated as (Farquhar and Richards 1984):} \]

\[ \Delta = \frac{\delta^{13}C_{\text{air}} - \delta^{13}C_{\text{plant}}}{1 + \frac{\delta^{13}C_{\text{plant}}}{1000}}, \% \quad \text{Eq. 5} \]

The \( \delta^{13}C \) of atmospheric CO\(_2\) was measured directly only at the beginning of the project to establish a relationship between \( \delta^{13}C_{\text{air}} \) and \( 1/[CO_2] \) (Keeling 1958) in the growth facility. In each experiment reported here, atmospheric [CO\(_2\)] was measured continuously in each greenhouse bay throughout the growth interval, and mean [CO\(_2\)] from the week preceding sampling was converted to an estimate of \( \delta^{13}C_{\text{air}} \) using:

\[ \delta^{13}C_{\text{air}} = 5273 \times \frac{1}{[CO_2]} - 22.94, \% \quad \text{Eq. 6} \]

Leaves for isotopic analyses were chosen from the youngest cohort of leaves which had completed the phase of rapid expansion. These usually represented the largest leaves on the young vegetative plants, and occupied upper canopy positions experiencing maximal illumination. Unless otherwise indicated, samples consisted of several leaflets taken
from two such leaves for each tomato plant and two full leafblades from each of two or more tillers per rice plant. Where specific leaf area is reported, it was measured from fresh-leaf projected area and total dry weight on these isotope sample leaves. After drying for 48 hours at 60°C, leaf samples were ground into an homogeneous powder and 2 mg subsamples weighed for isotopic analysis. In addition to $\delta^{13}$C, COIL analyses provided elemental composition in percent N (%N) and percent C (%C), with measurement precisions of ±0.1% and ±0.75%, respectively.

**Statistics**

Most data reported were analyzed in two or three-level Analysis of Variance (ANOVA) encompassing genotype and one or more growth conditions (*i.e.* nutrient level, irradiance level, temperature) in a factorial design. Sample sizes, unless otherwise stated, were six plants per genotype-treatment combination. For isotopic analyses, the six plants were usually bulked into three samples, each representing two plants, for economy. Precision (one standard deviation, or SD) of repeated $\delta^{13}$C measures on a single ground plant sample was generally ≤ 0.12‰ or less, while the SD for a given genotype/treatment averaged 0.35‰ for tomato and 0.2‰ for rice. Bulked samples were therefore approximate representations of the mean values of the contributing plants though there was some loss of statistical power due to reduced replication. Some larger plantings incorporated a randomized block design of three or six blocks. Blocks were always arranged along a north-south axis that allowed assessment of influences related to the greenhouse air-handling system. Though well-mixed by fan networks within each bay,
make-up air was added only at the north end of each greenhouse and resulted in modest
gradients in temperature, relative humidity (RH), and possibly other factors, within the bay. Block effects were generally significant but small and consistently more important for some measured plant parameters than others. Most influenced were %N and SLA, and least influenced were Δ and measures related to plant height and leaf dimensions. Prior to some plantings, variation in HID lamp output was measured at each plant’s future position, and these values, when collected, were entered into final statistical analyses as a covariate. Reported temperature treatments refer to sets of plants in three contrasting greenhouse bays and therefore have elements of pseudoreplication. The bays were individually monitored to document consistency of light, RH, [CO₂] and air temperature.

Results and Discussion

A number of different genotypes were used in the following screens as specified within each section below. The genotypes were chosen to maximize differences in Δ, as observed in preliminary screens, and also because they represent parental lines of mapping populations that can be used for the genetic dissection of the traits studied here. Except where otherwise noted, plants were grown in 2.5 L containers and sampled at three to four weeks from germination.

Δ was measured in all experiments reported below. A number of additional measurements were also included in several experiments to give greater insight into the
responses of component processes affecting $\Delta$. 1) Relative Growth Rates (RGR) from germination to harvest show overall plant carbon gain, integrating the effects of availability of resources such as light and nutrients, the physiological state as affected by temperature, and $\Delta$ itself.  2) Percent root and leaf biomass represent allocation patterns of biomass investment on a dry weight basis. Percent root was only measured on plants grown in the mineral soil media (see Methods). For consistency across experiments and conditions, percent leaf refers to leaf blade as a fraction of total shoot rather than total plant biomass. These allocation patterns have implications for nutrient acquisition and water transport capacities relative to the demands of photosynthetic tissues. 3) Specific Leaf Area (SLA, m$^2$ kg$^{-1}$) reflects the amount of leaf surface area available for diffusive exchange of CO$_2$ relative to the potential carboxylation capacity of the leaf, 4) Photosynthetic carbon assimilation rates (A) were measured with a portable gas-exchange system (LICOR 6400) and are expressed relativised to both unit leaf area ($\mu$mol m$^{-2}$ s$^{-1}$) and unit leaf biomass ($\mu$mol kg$^{-1}$ s$^{-1}$). Expressing photosynthesis per unit leaf area links carboxylation and diffusion steps in a manner most directly related to the determination of $\Delta$ (Eq. 2), while the mass-based expression is more directly relevant to resource investment and RGR. 5) %N was measured on bulk leaf tissue. Leaves compose the largest single biomass fraction in these young vegetative plants and this fraction is expected to have higher nitrogen content than others; thus, %N of the leaf fraction is a good index of total plant nitrogen status.

*Temperature effects*

Growth temperature responses were tested over a range from 23 to 33°C for mean daytime values. This spans the photosynthetic temperature optimum of warm season C$_3$
crops and includes typical growth temperatures for both crops used here under favorable conditions. Responses differed substantially between tomato and rice (Fig. 1, Tables 2 & 3).

**Tomato.** RGR was substantially higher for tomato than for rice in these early vegetative stages, and somewhat less sensitive to temperature (Figs. 1A,B). The wild species, *S. hirsutum* and *S. pennellii*, had higher RGR than the tomato cultivars and there was a distinct temperature optimum for growth at or near 28°C with significant declines at both extreme temperatures. SLA was almost unaffected by temperature (Fig. 1E). Photosynthetic rates in both area (Fig. 1G) and mass based units (Fig. 1I) were highest at the highest temperature, but did not vary as greatly overall as in rice. The wild species tended to have higher *A* than the cultivars, particularly at low temperatures or when expressed per unit leaf mass. Plants at high temperatures were taller and had significantly greater biomass in stems (data not shown), such that, despite declining percent root biomass, percent leaf biomass also declined with increasing temperature (Fig. 1C). Temperature had little effect on Δ in tomato, with only a small trend toward higher values at higher temperature (Fig 1K). A significant genotype X soil type interaction was seen, however, due to the behavior of *S. pennellii*, which had substantially higher Δ in mineral soil than in the peat and vermiculite based ‘tomato mix’ (Table 2, see also Fig. 2 L&M).

**Rice.** All rice varieties showed dramatic depression in RGR at the lowest temperature and no change in RGR across the two higher temperature treatments (Fig. 1B). There
were no significant differences in RGR responses to temperature among the five genotypes tested nor between flooded versus aerated soil conditions (Table 3). $A$, expressed on an area basis, was actually highest at the lowest temperature for all rice varieties except Teqing (Fig. 1F). These high rates were associated with thicker leaves (low SLA, Fig. 1F). Expressed on a mass basis, $A$ was highest at the intermediate temperature, 28°C (Fig. 1J). $A$ showed strong genetic differences and very stable rankings with no significant G x E interactions (Table 3). These stable rankings contrast strongly with several other parameters such as SLA, $A$, allocation to productive leaf tissue (Fig. 1D), and percent carbon content of the leaves (data not shown), all of which showed responses that differed dramatically among different genotypes and/or soil conditions (Table 3).

Stomatal response to temperature is influenced both by the temperature sensitivity of carboxylation capacity in the leaf and by the increased transpiration rates which can be associated with large leaf to air vapor pressure gradients ($D$) at high temperatures. If temperature is increased while holding absolute humidity constant (i.e. allowing $D$ to increase), the net effect is generally one of stomatal closure. In contrast, if relative humidity is held constant, stomatal conductance will either be constant or increase in proportion to photosynthetic capacity (Ball, Woodrow et al. 1987; Matzner and Comstock 2001). In our studies, relative humidity was held constant at 50% and the range of temperatures bracketed the expected optimum for $C_3$ photosynthesis. Even over this limited range, the more tropical origins of rice are apparent in its much more severe growth depression at 23°C compared to tomato. Rice also showed more obvious leaf
acclimation responses during growth, altering SLA and the relationships between area
and mass-based photosynthesis. The small shift observed in \( \Delta \) with increased temperature
in both crops could be related to a number of factors, including transpirational cooling at
supra-optimal temperatures, depression of carboxylation efficiency above the temperature
optimum, and possible additional isotope effects associated with increased respiration at
high temperature (Ghashghaie, Badeck et al. 2003). Other controlled temperature studies
have also reported a positive correlation between temperature and \( \Delta \) (Morecroft and
Woodward 1996). But, most importantly, the shift in \( \Delta \) was consistent in magnitude
across genotypes in both rice and tomato.

\( \Delta \) is not directly proportional to WUE across temperature treatments because of large
increases in \( w_i \) affecting the denominator of Eq. 1 as leaf temperature increases.
Nonetheless, the ranking of plants for WUE using \( \Delta \) still holds within each treatment, and
the lack of G x E for \( \Delta \) implies a similar result for WUE, though the magnitudes of the
main treatment effects would be much greater for WUE than for \( \Delta \).

*Nutrient treatments*

While nutrient levels were adjusted by application of balanced fertilizer, for convenience
we refer only to the level of nitrogen in each treatment. Nitrogen is also the nutrient most
often discussed in the context of WUE because of the expected trade-offs between WUE
and nitrogen use efficiency mediated through \( c_i \).
**Tomato.** Variation in nutrient availability had a large impact on the growth rate and allocation pattern in tomato and there were dramatic differences between the responses of the wild and cultivated species (Fig. 2, Table 4). For all species, growth rates increased substantially as fertilizer levels were increased from 25 to 100 $\mu$g(N) L$^{-1}$ but tended to saturate at the highest nutrient level (Fig. 2B,C). The two tomato cultivars had a two-fold increase in SLA (Fig. 2F,G) and three-fold increases in %N (Fig. 2D,E) at high nutrient availability. Even if expressed on an area basis (not plotted), N content was substantially higher under high fertilizer despite much thinner leaves. These patterns were reflected in photosynthetic rates, which were higher at high nutrient availability and varied more on a mass basis (Fig. 2J&K) than on an area basis. A in the wild species showed similar qualitative responses to nutrient levels but of much smaller amplitude. *S. pennelli* increased in SLA by only 20% and *S. hirsutum*, which had the highest SLA overall, did not significantly vary in SLA among treatments. Percent leaf nitrogen increased only 40 and 60% in *S. pennellii* and *S. hirsutum*, respectively, and variation in photosynthetic rate was similarly modest in comparison to the domestic cultivar responses. On average, there was an *ca.* 25% reduction between extreme low and high nutrient treatments in allocation of biomass to roots (Fig. 2A). In contrast to its relatively constant leaf characteristics, *S. hirsutum* was distinguished by a 40% increase in %root in the lowest nutrient treatment, a significantly larger shift than other genotypes. Variation in $\Delta$ was primarily associated with genotype alone and much less so with soil and nutrient availability (Table 4, Fig. 2L,M). A very small genotype X nutrient level interaction was related to slightly larger increases in $\Delta$ at high nutrient levels for the cultivars than the wild species.
**Rice.** Rice was evaluated for nutrient treatments spanning 25 to 200 µg(N) L⁻¹ using one cultivar, *O. sativa* Jefferson and the wild species *O. rufipogon* (Fig. 3). Fewer parameters were measured, but, relative to tomato, rice had less of a tendency toward a saturated growth response at high nutrient levels (Fig. 3A). Leaf nitrogen contents were also less variable than in tomato (Fig. 3B). *O. rufipogon* had an increase in nitrogen content of 60% between the most extreme nutrient treatments while Jefferson showed no significant variation. Δ for rice was again primarily determined by genotype (Fig. 3C). There was a small effect of nutrient level and no significant genotype x nutrient level interaction. Interestingly, while high nutrient levels caused a consistently small increase in Δ in all tomato genotypes examined, a slight decrease was seen in both rice genotypes.

Nutrient status, and especially leaf nitrogen content, receives frequent attention in the context of WUE studies due to interest in whether variation in WUE, both among genotypes and/or environments, is related more to modulation of stomatal conductance or to changes in carboxylation capacity. High leaf nitrogen can theoretically promote simultaneous high photosynthetic rates and high WUE but this combination may be limited by whole plant nitrogen budgets. A majority of crops studied have shown that genetic variation in Δ is related more strongly to variation in stomatal conductance than carboxylation capacity (Ehleringer, White *et al.* 1990; Turner 1993; White, Castillo *et al.* 1994; Zacharisen, Brick *et al.* 1999) but several important exceptions have also been reported in both crop and wild species (Ares, Fownes *et al.* 2000; Prasolova, Xu *et al.* 2003; Rao, Udaykumar *et al.* 1995; Turner 1993; Udayakumar, Sheshshayee *et al.* 1998;
Virgona and Farquhar 1996). $\Delta$ is sometimes positively correlated with both high stomatal conductance and high photosynthetic capacity through a suite of pleiotropic characters related to early vigor and maturation (McKay, Richards et al. 2003). Even in crops where overall correlations suggest that high yields are associated with high stomatal conductance and high $\Delta$, individual genotypes may sometimes be found in which high yield is associated with low $\Delta$ (i.e. high water use efficiency) under water-limiting conditions without sacrifice of maximal yield potential (Condon, Richards et al. 2002; Rebetzke, Condon et al. 2002).

Leaf nitrogen content is generally assumed to be strongly correlated with photosynthetic capacity (Reich, Ellsworth et al. 1998; Reich, Ellsworth et al. 1999), as was found here in tomato (Fig. 2), and so is frequently used as a proxy. In some studies, low nitrogen availability may result in reduced photosynthetic capacity without proportional stomatal closure and a concomitant reduction in $\Delta$ (Brueck, Jureit et al. 2001; DaMatta, Loos et al. 2002; DesRochers, van den Driessche et al. 2003; Hamerlynck, Huxman et al. 2004). However, we found that, in both rice and tomato, large changes in leaf nitrogen were associated with only minor shifts in $\Delta$ even when leaf nitrogen was positively correlated with photosynthetic capacity. This indicates a strong coregulation of stomatal and photosynthetic capacities in response to nutrient levels. The opposite trends of slightly increasing vs. decreasing $\Delta$ in tomato (Fig. 2L,M) and rice (Fig. 3C), respectively, as %N increased may have been related to slight differences in the control of $\Delta$ or to differences in carbon metabolism and additional isotopic fractionation directly associated with nitrogen assimilation (Guo, Brueck et al. 2002; Raven and Farquhar 1990). Nonetheless,
Δ was largely stable with varying nitrogen availability, as has been seen in other studies (Livingston, Guy et al. 1999).

**Soil media and flooding**

Soil conditions were varied factorially in several experiments (eg. Tables I & II), and generally showed no interaction with genotype in determining Δ. Both tomato and rice were tested across a comparison of mineral soil, used to facilitate root harvesting, and a more typical peat and vermiculite based potting medium. *S. pennellii* was the only genotype, in either rice or tomato, that showed substantial sensitivity of Δ to soil type (eg. Fig. 2L,M), including additional genotypes of both rice and tomato not detailed here (J. Comstock, unpub. results). The unique sensitivity of this genotype may be related to the unusual root characteristics of *S. pennellii*. This species, which originates in a fog-desert environment, has a very low overall allocation of biomass to the root system (Fig. 2A), and possesses extremely fine, hairlike roots.

Soil moisture conditions for cultivated rice range from flooded paddies to dry upland fields. This might influence comparisons of cultivars specialized to different practices. We therefore included flooded (anaerobic) and aerobic soil treatments for some experiments in rice (Table 3). Rice genotypes showed a small but significant main effect and no G x E in Δ for aerobic versus flooded conditions. Δ was slightly lower under flooded conditions, which is likely related either to stomatal closure or altered nitrogen uptake processes (Raven and Farquhar 1990).
Restrictive soil volume

In any scientific work done on potted material, the potential effects of root restriction should be taken into consideration. It is well established that root to shoot hormonal signaling is involved in stomatal responses to stress (Comstock 2002). This adds to concern that experimental results relating Δ to environmental conditions using potted material could be misleading in some circumstances. The effects of soil volume were therefore evaluated for contrasting pairs of tomato and rice genotypes (one cultivar and one genotype from a congeneric wild species in each case). Three soil volumes, 0.3, 0.8, and 2.5 L, were used in a factorial design with two nutrient levels indicated as 100 and 200 µg(N) L⁻¹.

Tomato. Both the cultivar E6203 and S. hirsutum showed substantial depressions of RGR with low soil volume, though E6203 was more sensitive (Table 5; Fig. 4A,B). Only E6203 showed significant enhancement of RGR at the higher nutrient level, consistent with results from the broader nutrient study reported above (Fig. 2A). Little of the overall growth suppression associated with restricted soil volume could be compensated by nutrient regime in either genotype (Fig. 4A vs. B). Instead, high nutrient availability caused elevated leaf nitrogen contents indicative of luxury consumption and storage (Fig. 4I,J). Allocation of biomass to roots was depressed at the high nutrient level (Fig. 4E vs. F). The percentage biomass allocated to the roots was similar in the two genotypes under most conditions but sharply elevated in S. hirsutum in the smallest soil volume at
the lower nutrient level (Fig. 4E). Fixed genetic effects were again the most important determining factor for Δ. In contrast to the small nutrient and temperature effects discussed above, Δ showed substantial sensitivity to soil volume, particularly when soil volume was low (Fig. 4M,N). Values of Δ shifted, in some cases, more than 1‰, and significant genotype by soil volume interactions were observed (Table 5).

**Rice.** The high nutrient treatment enhanced growth slightly at all soil volumes in rice but did not compensate for the inhibition of limiting soil volumes (Table 6, Fig. 4C,D). Biomass allocation to roots was reduced at high nutrient levels but the response to potsize was variable. Root allocation increased in small pots in the low nutrient treatment (Fig. 4G) but decreased in small pots in the high nutrient treatment (Fig. 4H). Leaf nitrogen content was positively correlated with RGR in rice; it was lowest for small soil volumes and low nutrient levels. In rice, Δ was again primarily determined by genotype with a slight depression at high nutrients (Fig. 4O,P) consistent with the trend reported above (Fig. 3C).

In both crops, constriction of root expansion in limiting soil volumes caused a growth restriction despite the maintenance of well-watered conditions, compensating nutrient regimes, and adequate spacing to avoid crowding and light competition (Fig. 4A,B,C,D)). This suggests that the restriction was due to hormonal signals from the roots leading to down-regulation of growth rates. Substantial effects on Δ were seen only at very small soil volumes at three to four weeks of age. Tomato was more sensitive than rice to small
soil volumes, showing greater RGR inhibition and a more dramatic $\Delta$ response (Fig. 4M,N,O,P).

*Plant age and soil volume*

In other experiments reported here, plants were sampled at only a single age, always between three and four weeks from germination. The generality of these age-specific results could be influenced both by inherent developmental patterns and changing plant size relative to soil volume. To address these issues, a second experiment involving variable soil volume was evaluated in rice, this time contrasting two cultivated *O. sativa* genotypes, Nipponbare and Kasalath. In this experiment, plants were grown with a wider range of soil volumes spanning from 0.3 to 35.0 L and were sampled repeatedly at ages from two to five weeks (Fig. 5).

Within a cultivar, values for $\Delta$ were most similar across soil volumes at the earliest ages, but pronounced soil volume effects developed in both cultivars as plants aged (Fig. 5A,B). This was most notable in Kasalath, where the values of $\Delta$ for plants in the two smallest volumes had 1‰ higher discrimination at five weeks (Fig. 5B). In Nipponbare, differences in $\Delta$ due to soil volume were also more pronounced with age but never so large (Fig. 5A). While older Kasalath plants had higher $\Delta$ in small soil volumes, the opposite was true in Nipponbare. Consequently, at two and three weeks, genetic differences in $\Delta$ were almost independent of soil volume (Fig. 5C). With increasing age, the two genotypes continued to have the same stable relationship for $\Delta$ in the three largest
soil volumes but actually reversed rank for $\Delta$ in the smallest soil volumes. Total soil volume seemed to be of greater importance than the dimension ratio, at least under this relatively extreme condition (see pot-size description in methods). Significant effects on plant growth rates, as indicated by plant height and tiller number, were discernable earlier than effects on $\Delta$ and were associated with the two smallest soil volumes even at two weeks of age (data not shown).

The severe root restriction generating strong $G \times E$ in $\Delta$ would be unlikely under most crop field conditions but has considerable practical importance when measuring $\Delta$ in glasshouse or growth chamber conditions where space is limited. Small soil volumes gave comparable results to larger pots only at very young ages, and led to substantial changes in genetic rankings with age. Plants in a soil volume of 2.5 L had indistinguishable growth rates and $\Delta$ from plants grown in much larger soil volumes, at least up to 5 weeks of age. This was the standard soil volume used in most experiments reported here, and the plants were screened at an age of 3 to 4 weeks.

*Irradiance levels*

We investigated the response to varying growth irradiance (light) levels from about 400 to 1400 $\mu$mol (PAR) m$^{-2}$ s$^{-1}$ for both rice and tomato. The lowest light levels averaged one-third or less of photosynthetic light saturation while the highest levels were fully saturating throughout the photoperiod. Growth light level resulted in greater variation in $\Delta$ than any other environmental parameter tested, showing changes of over 2% across the
tested range (Fig. 6 A,B). While genotype x irradiance interactions were not significant in the experiments shown here, we have observed genotype-specific sensitivity to light levels for these genotypes in other experiments (J. Comstock, unpublished results). Due to the large magnitude of the irradiance effects on $\Delta$, consistency of known irradiance levels is perhaps the single most important environmental control for any genetic comparisons of values in this trait.

Irradiance level and shading have been observed, in previous studies, to have effects on $\Delta$ similar in magnitude and direction to those observed here (Carelli, Fahl et al. 1999; Ehleringer, Field et al. 1986; Hanba, Mori et al. 1997). Growth irradiance levels can alter several different physiologically important traits, including electron-transport rate, direct stomatal responses to light, and responses associated with leaf temperature. In our experiments with both crops, air temperature was constant but leaf temperatures may have varied as much as 2°C, having a substantial effect on the leaf to air pressure gradient, $D$ (Fig. 6). It is likely that the responses to irradiance treatments we observed were a mixture of direct responses to light and additional responses to $D$, both acting to lower $\Delta$ at high irradiance. This complex response to irradiance level, and the magnitude of its effect on $\Delta$, suggest that irradiance should be kept as uniform as possible when measuring $\Delta$. Since there is some evidence for genotype by environment interactions for this trait, although it was not strong in the studies reported here, it appears that careful control of irradiance levels, and use of irradiance levels appropriate to field growing conditions, would be desirable for accurate characterization of genetic variation in $\Delta$. 
Conclusions

For most environmental conditions tested, genetic rankings for $\Delta$ showed remarkably little variation and, regardless of significance levels, sums of squares for $G \times E$ interaction terms were usually very small relative to those for genotypic and environmental main effects. The genotypes in these studies were specifically chosen because they were known to provide contrasts in $\Delta$ under at least some prior tested conditions (Dingkuhn, Farquhar et al. 1991, unpublished preliminary surveys; Martin, Nienhuis et al. 1989) and because of their potential relevance to future studies as parents of available permanent mapping populations (Eshed and Zamir 1994; Huang, Parco et al. 1997; Ishimaru, Yano et al. 2001; Lin, Sasaki et al. 1998; Monforte and Tanksley 2000). While similar studies of genotypes with less underlying genetic difference in $\Delta$ setpoints would be likely to show a greater sensitivity of ranking to environmental factors, these studies have demonstrated that genetic differences for $\Delta$ in rice and tomato may be quite robust over a wide range of conditions.

The conservative genetic rankings of $\Delta$ are highly consistent with the view that this parameter is indicative of a specifically controlled setpoint between stomatal conductance and the rate of photosynthetic carbon metabolism. Several such examples are presented above, with the most dramatic being the tomato responses to nutrient levels (Fig. 2, Table 4). The two domestic cultivars had three-fold changes in photosynthetic rate per unit mass coupled with large changes in SLA resulting in almost two-fold changes in the photosynthetic rate per unit area. Nonetheless, the strong main effects and $G \times E$ in these mechanistically linked traits did not alter the final ratio of leaf diffusive exchange relative
to carboxylation capacity as indicated by $\Delta$. This implies a stomatal feedback mechanism that is very finely tuned to compensate for these altered balances and is regulated to different setpoints in the contrasting genotypes.

Such feedback is likely to be mediated by several mechanisms operating simultaneously during growth. At the shortest timescale is direct sensing of leaf internal CO$_2$ concentration (Assmann and Palade 1993; Mott 1988; Mott 1990). Feedback cues are also derived from metabolite pools downstream of the initial carbon fixation steps in the chloroplasts (Paul and Foyer 2001), and may affect developmental processes in the leaf (Brownlee 2001; Sage 2000) as well as short-term stomatal regulation. Whatever the mechanism and regardless of whether the feedback response is short- or long-term, regulatory feedback linked to $c_i$ will result in the coordination of photosynthetic capacity and stomatal behavior with a genetically determined set-point indicated by $\Delta$.

In contrast to the low and usually nonsignificant levels of G x E observed for $\Delta$ in these experiments, environmental variables commonly did have main effects of various magnitudes. Main environmental effects were small for nutrient level in both rice and tomato, soil flooding in rice, and temperature treatments in tomato. Larger temperature effects were seen in rice, but primarily at a substantially sub-optimal growth temperature. The narrow range of $\Delta$ with respect to environmental variation in these cases is also consistent with the hypothesis that $\Delta$ reflects a broad set-point in metabolism.
The largest departure from this pattern is seen in the irradiance studies where main treatment effects spanned nearly 2‰. Based on the dynamics of diffusion gradients, $c_i$ must inevitably pass from values higher than $c_a$ during dark respiration and irradiance levels below the carbon assimilation compensation point (i.e. $A \leq 0$) to values lower than $c_a$ as $A$ becomes positive. In leaf gas-exchange studies, $c_i$ usually stabilizes at higher light levels, but may show progressive changes when light is less than half-saturating for carbon assimilation (Huxman and Monson 2003). Light is also highly studied in guard cell signal transduction as one of the primary cues for stomatal opening and short-term aperture regulation (Assmann and Palade 1993; Dietrich, Sanders et al. 2001). Set-point behavior reflected by $\Delta$ is therefore consistent with feedback regulation related to $c_i$ as discussed above. It does not, however, imply full homeostasis in $c_i$ when interacting with other stomatal regulatory mechanisms (Huxman and Monson 2003). Finally, large changes in $A$ at low vs. high light levels can alter the relationships between $c_{ci}, c_i,$ and the $[CO_2]$ in the chloroplasts ($c_c$), and may affect $\Delta$ in more complex ways than captured in Eq. 3 (Evans and von Caemerer 1996).

Despite the lack of strong G x E responses in $\Delta$, the numerous fixed responses of $\Delta$ to environmental conditions indicate a practical need for tight environmental control during any genetic screening activities. In terms of the magnitudes of fixed shifts in $\Delta$ associated with different environmental conditions, irradiance level > temperature > nutrient level > soil media conditions. All of these variables need to be monitored and held constant in genetic screening processes. Irradiance deserves special attention.
because of the magnitude of potential effects on $\Delta$ and because it is one of the most
difficult variables to standardize in a glasshouse context.

Acknowledgements

We wish to thank Christine Fleet and Wendy Vonhof for major contributions in data
collection and analysis, Brian Gollands for figure preparation, and Paul King for
coordination and mentoring of high school and undergraduate interns. In particular,
Rebecca Rudicell collected data for the Keeling plots relating $\delta^{13}$C of greenhouse air to
atmospheric [CO$_2$]; Shaan Ghandi and Leonora Ballantyne did repeated size measures for
growth analysis and Anna Nowogrodski and Laura Vineyard assisted with gas-exchange
measurements. This work was supported by the National Science Foundation (Plant
Genome Research Project Grant DBI-0110069, *Genomic Analysis of Plant Water Use
Efficiency*).
References


Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley SD (2002) Deductions about the number, organization and evolution of genes in the tomato genome based on


Table 1. Environmental conditions during growth at the BTI greenhouses. Treatment variables in the first column correspond to subheadings in the Results section and respective plantings discussed therein. PP is photoperiod, PAR is photosynthetically active radiation averaged over the photoperiod and including natural sunlight and supplemental HID lamps, RH is relative humidity, Airtemp is measured at plant height, and \([\text{CO}_2]\) is average photoperiod carbon dioxide concentration.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Crop</th>
<th>PP hrs</th>
<th>PAR (\mu\text{mol m}^{-2} \text{s}^{-1})</th>
<th>RH %</th>
<th>Airtemp (^\circ\text{C})</th>
<th>([\text{CO}_2]) (\mu\text{L L}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Both</td>
<td>14</td>
<td>625</td>
<td>50</td>
<td>Variable Treatment</td>
<td>380</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Tomato</td>
<td>14</td>
<td>625</td>
<td>50</td>
<td>28</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Rice</td>
<td>14</td>
<td>800</td>
<td>60</td>
<td>28</td>
<td>341</td>
</tr>
<tr>
<td>Soil volume x Nutrient</td>
<td>Both</td>
<td>14</td>
<td>800</td>
<td>60</td>
<td>28</td>
<td>341</td>
</tr>
<tr>
<td>Soil volume x Age</td>
<td>Rice</td>
<td>14</td>
<td>640</td>
<td>48</td>
<td>28</td>
<td>375</td>
</tr>
<tr>
<td>Irradiance</td>
<td>Tomato</td>
<td>14</td>
<td>variable</td>
<td>48</td>
<td>28</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Rice</td>
<td>12</td>
<td>variable</td>
<td>45</td>
<td>30</td>
<td>380</td>
</tr>
</tbody>
</table>
Table 2. Effects on tomato of three growth temperatures and two soil conditions in factorial design. This table evaluates the stability of genetic ranking of four tomato genotypes for $\Delta$ and a variety of physiological and morphological variables. Genotypes include *S. lycopersicum* M82, *S. lycopersicum* E6203, *S. pennellii* and *S. hirsutum*. Soil conditions contrast a ‘standard tomato-mix’ (Fig. 1A,C,E,G,I,K) with a ‘mineral’ potting soil (not shown graphically). $n = 6$ plants per genotype by treatment combination. All plants were measured individually for RGR, only four out the six for %leaf (relative to above ground biomass), and $A$, and three bulked samples of two plants each for %N, and $\Delta$. The total degrees of freedom (df) are given for each variable in the second column, and the degrees of freedom for each main treatment and interaction terms (constant for all measures) are given in the column headings. RGR is based on seed and final shoot biomass, SLA is $m^{-2}$ leaf area $kg^{-1}$ dry weight, $A$ is net photosynthetic rate expressed both per unit leaf area and per unit leaf biomass, and %N and $\Delta$ are based on bulk dried leaf blade tissue. The table gives sums of squares (SS) for each model effect and $p$ values; $p<0.0001$, 0.001, 0.01, and 0.05 = ****, ***, **, and *, respectively; NS = not significant.

<table>
<thead>
<tr>
<th>df</th>
<th>Model</th>
<th>Error</th>
<th>Genotype df = 3</th>
<th>Day °C df = 2</th>
<th>Soil df = 1</th>
<th>G x °C df = 6</th>
<th>G x S df = 3</th>
<th>S x °C df = 2</th>
<th>G x°C x S df = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>SS</td>
<td>0.0601</td>
<td>0.0131</td>
<td>0.0279</td>
<td>0.0268</td>
<td>0.0009</td>
<td>0.0033</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>91</td>
<td>SS</td>
<td>0.2933</td>
<td>0.0683</td>
<td>0.1806</td>
<td>0.0545</td>
<td>0.0321</td>
<td>0.0122</td>
<td>0.0072</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>70</td>
<td>SS</td>
<td>0.1114</td>
<td>0.0236</td>
<td>0.0797</td>
<td>0.0220</td>
<td>n/a</td>
<td>0.0120</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>85</td>
<td>SS</td>
<td>869.5</td>
<td>432.4</td>
<td>590.6</td>
<td>55.0</td>
<td>4.6</td>
<td>28.5</td>
<td>87.4</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>82</td>
<td>SS</td>
<td>996.7</td>
<td>573.0</td>
<td>466.2</td>
<td>163.6</td>
<td>9.6</td>
<td>158.7</td>
<td>7.4</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>82</td>
<td>SS</td>
<td>0.8439</td>
<td>0.5021</td>
<td>0.4300</td>
<td>0.1377</td>
<td>0.0012</td>
<td>0.0739</td>
<td>0.0321</td>
<td>0.0717</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td>71</td>
<td>SS</td>
<td>49.90</td>
<td>10.46</td>
<td>42.78</td>
<td>3.80</td>
<td>0.06</td>
<td>0.81</td>
<td>0.40</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>***</td>
<td>NS</td>
<td>NS</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>71</td>
<td>SS</td>
<td>67.93</td>
<td>10.32</td>
<td>56.00</td>
<td>1.71</td>
<td>3.83</td>
<td>2.34</td>
<td>3.06</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>****</td>
<td>NS</td>
<td>**</td>
<td>NS</td>
</tr>
</tbody>
</table>

46
Table 3. Effects on rice of three growth temperatures and two soil conditions in factorial design. The ranking stability of five rice genotypes is evaluated for Δ and a variety of physiological and morphological variables. All genotypes are cultivars of *O. sativa* and include Azucena, IR64, Nipponbare, Kasalath, and Teqing. The two conditions are both standard ‘rice-mix’ media but under contrasting aerobic (Fig. 1B,D,F,H,J,L) vs. flooded conditions (data not shown graphically). \( n = 6 \) plants per genotype by treatment combination. Sample sizes, variable, column, and row definitions are similar to Table 2.

<table>
<thead>
<tr>
<th>df</th>
<th>Model</th>
<th>Error</th>
<th>Genotype df =4</th>
<th>Day °C df=2</th>
<th>Soil df=1</th>
<th>G x °C df=8</th>
<th>G x S df=4</th>
<th>S x °C df=2</th>
<th>G x°C x S df=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGR, g g⁻¹ day⁻¹</td>
<td>179</td>
<td>SS</td>
<td>0.0700</td>
<td>0.0080</td>
<td>0.0318</td>
<td>0.0359</td>
<td>0.0006</td>
<td>0.0007</td>
<td>0.0002</td>
</tr>
<tr>
<td>Leaf, %</td>
<td>141</td>
<td>SS</td>
<td>0.0814</td>
<td>0.0303</td>
<td>0.0497</td>
<td>0.0041</td>
<td>0.0033</td>
<td>0.0175</td>
<td>0.0023</td>
</tr>
<tr>
<td>SLA, m²/kg</td>
<td>141</td>
<td>SS</td>
<td>806.1</td>
<td>487.0</td>
<td>251.2</td>
<td>345.0</td>
<td>2.0</td>
<td>140.2</td>
<td>2.7</td>
</tr>
<tr>
<td>A, µmol m² s⁻¹</td>
<td>141</td>
<td>SS</td>
<td>1230.8</td>
<td>556.0</td>
<td>201.9</td>
<td>508.7</td>
<td>6.2</td>
<td>97.4</td>
<td>118.2</td>
</tr>
<tr>
<td>A, kg m² s⁻¹</td>
<td>141</td>
<td>SS</td>
<td>0.574</td>
<td>0.5269</td>
<td>0.1706</td>
<td>0.1043</td>
<td>0.0155</td>
<td>0.0401</td>
<td>0.0668</td>
</tr>
<tr>
<td>Nitrogen, %</td>
<td>89</td>
<td>SS</td>
<td>20.725</td>
<td>2.736</td>
<td>8.361</td>
<td>10.705</td>
<td>0.002</td>
<td>0.611</td>
<td>0.103</td>
</tr>
<tr>
<td>Δ, ‰</td>
<td>89</td>
<td>SS</td>
<td>44.39</td>
<td>3.35</td>
<td>15.13</td>
<td>26.43</td>
<td>1.42</td>
<td>0.47</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Table 4. Effects on tomato of four nutrient levels and two soil conditions in factorial design. The ranking stability of four tomato genotypes is evaluated for $\Delta$ and a variety of physiological and morphological variables. Genotypes include *S. lycopersicum* M82 and *S. lycopersicum* E6203, *S. pennellii* and *S. hirsutum*. Soil conditions contrast a ‘standard tomato-mix’ (Fig. 2B,D,F,H,J,L) with a ‘mineral’ potting soil (Fig. 2A,C,E,G,I,K,M). $n = 6$ plants per genotype by treatment combination. Sample sizes, variable, column, and row definitions are similar to Table 2.

<table>
<thead>
<tr>
<th>df</th>
<th>Model</th>
<th>Error</th>
<th>Genotype</th>
<th>Soil</th>
<th>Nutrient</th>
<th>G x S</th>
<th>G x N</th>
<th>S x N</th>
<th>G x S x N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGR, g g$^{-1}$ day$^{-1}$</td>
<td>189</td>
<td>SS</td>
<td>0.0831</td>
<td>0.0244</td>
<td>0.0503</td>
<td>0.0027</td>
<td>0.0235</td>
<td>0.0001</td>
<td>0.0018</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td></td>
<td>****</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>SLA, m$^2$/kg</td>
<td>112</td>
<td>SS</td>
<td>2851</td>
<td>726</td>
<td>1168</td>
<td>4</td>
<td>736</td>
<td>55</td>
<td>460</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>NS</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>%root</td>
<td>54</td>
<td>SS</td>
<td>0.0885</td>
<td>0.0175</td>
<td>0.0549</td>
<td>n/a</td>
<td>0.0186</td>
<td>n/a</td>
<td>0.0097</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>%leaf</td>
<td>54</td>
<td>SS</td>
<td>0.0184</td>
<td>0.0123</td>
<td>0.0072</td>
<td>n/a</td>
<td>0.0084</td>
<td>n/a</td>
<td>0.0043</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>***</td>
<td>n/a</td>
<td>***</td>
<td>n/a</td>
<td>NS</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>%stem</td>
<td>54</td>
<td>SS</td>
<td>0.1778</td>
<td>0.0371</td>
<td>0.1431</td>
<td>n/a</td>
<td>0.0120</td>
<td>n/a</td>
<td>0.0265</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>*</td>
<td>n/a</td>
<td>**</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>%petiole</td>
<td>54</td>
<td>SS</td>
<td>0.0315</td>
<td>0.0119</td>
<td>0.0205</td>
<td>n/a</td>
<td>0.0023</td>
<td>n/a</td>
<td>0.0097</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>***</td>
<td>**</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>A, $\mu$mol m$^{-2}$ s$^{-1}$</td>
<td>104</td>
<td>SS</td>
<td>1334</td>
<td>604</td>
<td>182</td>
<td>78</td>
<td>443</td>
<td>84</td>
<td>221</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>***</td>
<td>**</td>
<td>****</td>
<td>*</td>
<td>**</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>A, kg m$^{-2}$ s$^{-1}$</td>
<td>104</td>
<td>SS</td>
<td>1.857</td>
<td>0.654</td>
<td>0.411</td>
<td>0.049</td>
<td>0.647</td>
<td>0.028</td>
<td>0.343</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>NS</td>
<td>***</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td>Nitrogen, %</td>
<td>95</td>
<td>SS</td>
<td>101.7</td>
<td>10.8</td>
<td>41.4</td>
<td>0.0</td>
<td>49.3</td>
<td>1.2</td>
<td>6.7</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>NS</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>$\Delta$, ‰</td>
<td>95</td>
<td>SS</td>
<td>69.68</td>
<td>10.35</td>
<td>58.43</td>
<td>2.10</td>
<td>2.17</td>
<td>2.27</td>
<td>3.65</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table 5. The effects on tomato of three soil-volumes and two nutrient regimes in factorial design. The stability of genetic ranking of two tomato genotypes, *S. lycopersicum* E6203 and *S. hirsutum*, were evaluated for growth rate, allocation, and Δ (Fig 4A,B,E,F,J,I,M,N). Sample sizes, variable, column, and row definitions are similar to Table 2.

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>Model</th>
<th>Error</th>
<th>Genotype df=1</th>
<th>Volume df=2</th>
<th>Nutrient df=1</th>
<th>G x V df=2</th>
<th>G x N df=1</th>
<th>V x N df=2</th>
<th>G x V x N df=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGR, g g⁻¹ day⁻¹</td>
<td>68</td>
<td>SS</td>
<td>0.0881</td>
<td>0.0107</td>
<td>0.0445</td>
<td>0.0398</td>
<td>0.0015</td>
<td>0.0018</td>
<td>0.0009</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td>****</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>% root</td>
<td>68</td>
<td>SS</td>
<td>0.0918</td>
<td>0.0542</td>
<td>0.0064</td>
<td>0.0011</td>
<td>0.0659</td>
<td>0.0042</td>
<td>0.0040</td>
<td>0.0035</td>
</tr>
<tr>
<td>Nitrogen, %</td>
<td>35</td>
<td>SS</td>
<td>50.32</td>
<td>1.80</td>
<td>3.66</td>
<td>3.32</td>
<td>40.52</td>
<td>0.29</td>
<td>1.25</td>
<td>0.53</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td></td>
<td>*</td>
<td>NS</td>
<td>****</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td>Δ, ‰</td>
<td>35</td>
<td>SS</td>
<td>38.80</td>
<td>3.14</td>
<td>24.87</td>
<td>4.22</td>
<td>4.93</td>
<td>1.50</td>
<td>0.33</td>
<td>2.32</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td></td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>NS</td>
<td>**</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table 6. The effects on rice of three soil-volumes and two nutrient regimes in factorial design.
The stability of genetic rankings of two rice genotypes was evaluated for growth rate, allocation, and Δ. Rice varieties include *O. sativa* Jefferson and *O. rufipogon* (Fig. 4C,D,G,H,K,L,O,P). Sample sizes, variable, column, and row definitions are similar to Table 2.

<table>
<thead>
<tr>
<th>df</th>
<th>Model</th>
<th>Error</th>
<th>Genotype df=1</th>
<th>Volume df=2</th>
<th>Nutrient df=1</th>
<th>G x V df=2</th>
<th>G x N df=1</th>
<th>V x N df=2</th>
<th>G x V x N df=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGR, g g⁻¹ day⁻¹</td>
<td>71</td>
<td>SS</td>
<td>0.0300</td>
<td>0.0047</td>
<td>0.0217</td>
<td>0.0061</td>
<td>0.0014</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>p</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>% root</td>
<td>71</td>
<td>SS</td>
<td>0.0637</td>
<td>0.0295</td>
<td>0.0024</td>
<td>0.0021</td>
<td>0.0204</td>
<td>0.0049</td>
<td>0.0001</td>
</tr>
<tr>
<td>p</td>
<td>***</td>
<td>*</td>
<td>NS</td>
<td>**</td>
<td>*</td>
<td>NS</td>
<td>****</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Nitrogen, %</td>
<td>35</td>
<td>SS</td>
<td>13.74</td>
<td>0.49</td>
<td>4.53</td>
<td>5.30</td>
<td>2.99</td>
<td>0.28</td>
<td>0.21</td>
</tr>
<tr>
<td>p</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Δ, ‰</td>
<td>35</td>
<td>SS</td>
<td>15.84</td>
<td>4.10</td>
<td>11.58</td>
<td>0.33</td>
<td>1.41</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>p</td>
<td>****</td>
<td>****</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
Fig. 1. Effects of variation in mean growth temperature during the photoperiod for a selection of both tomato (panels A, C, E, G, I, K) and rice (panels B, D, F, H, J, L) genotypes. These panels represent half of the data (one soil media) dealt with in factorial design in Tables 2 & 3. Shown are the relative growth rates (A, B), percent of shoot biomass allocated to leaf blade tissues (C, D), leaf area per unit leaf mass (E, F), Photosynthetic carbon assimilation per unit leaf area per second (G, H), the same carbon assimilation rate expressed per unit leaf mass per second (I, J), and carbon isotope discrimination (K, L). Each data point represents six plants for RGR, percent leaf, and \( \Delta \), and 4 plants for SLA and A. Error bars show ± one SE. Plot symbols represent different genotypes. In tomato panels wild species relatives are also distinguished from tomato cultivars by dashed and solid lines, respectively. In rice panels, line dashing is a visual aid but follows no specific pattern.
Fig. 2. Effects of nutrient level and soil media on tomato. Two potting media were tested factorially with the nutrient levels, 1) a mineral soil (panels A, C, E, G, I, K, M) and 2) a standard vermiculite/peat based soil: ‘tomato-mix’ (panels B, D, F, H, J, L). Shown are percent root, calculated on soil-washing in the mineral soil only and representing all size classes of roots (A), the relative growth rates (B, C), %N measured for leaf-blade tissue only (D, E), leaf area per unit leaf mass (F, G), photosynthetic carbon assimilation per unit leaf area per second (H, I), the same carbon assimilation expressed as a rate per unit leaf mass per second (J, K), and $\Delta$ (L, M). Each datapoint represents the mean of six replicate plants for %root, RGR, %N, and $\Delta$ and 4 plants for SLA and A. Error bars are ± one SE. Wild species relatives are also distinguished from tomato cultivars by dashed and solid lines, respectively.
Fig. 3. Response of two rice genotypes to nitrogen concentrations. A) the whole plant relative growth rates, B) %N measured for leaf-blade tissue only and C) carbon isotope discrimination. Each datapoint represents the mean of six replicate plants. Error bars are ± one SE.
Fig. 4. Effects of soil volume and fertilizer concentration on tomato and rice genotypes. This shows responses of both tomato (panels A, B, E, F, I, J, M, N) and rice (panels C, D, G, H, K, L, O, P) to a factorial treatment of soil volume and fertilizer level. Different fertilizer levels are shown in the contiguous columns of panels, and soil volume is the x-axis throughout. Plot symbols refer to contrasting genotypes in each crop. Panels A, B, C, D: whole plant relative growth rate; E, F, G, H: fractional allocation of standing biomass to the root system; I, J, K, L: percent nitrogen by weight in leaf tissues; M, N, O, P: carbon isotope discrimination. Each datapoint represents the mean of six replicate plants. Error bars are ± one SE.
Fig. 5. Stability of $\Delta$ with $\mp$ in young vegetative rice in a wide range of pots and associated soil volumes. A) O. sativa Nipponbare. B) O. sativa Kasalath. C) the difference in $\Delta$ between the two cultivars (Nipponbare – Kasalath) as calculated for each potsize on each date. Plot symbols indicate pots of contrasting diameter: 0.05, 0.07, 0.14, 0.25, and 0.36 m, which had soil volumes of 0.33, 0.30, 2.5, 13.0, and 35.0 L, respectively. Datapoints represent the means of six replicate plants, and error bars are $\pm$ one SE.
Fig. 6. Effects of growth irradiance on $\Delta$ in selected tomato (A) and rice (B) genotypes. All plants were grown together in a glasshouse but received varying degrees of supplemental HID lamp output. Light levels given are mean photoperiod irradiances of total PAR. Datapoints represent the means of six replicate plants, and error bars are ± one SE.