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A non-linear mixed-effects model to predict
cumulative bole volume of standing trees

TIMOTHY G. GREGOIRE & OLIVER SCHABENBERGER, College of

Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University,

USA

SUMMARY For purposes of forest inventory and eventual management of the forest

resource, it is essential to be able to predict the cumulative bole volume to any stipulated

point on the standing tree bole, while requiring measurements of tree size that can be made

easily, quickly and accurately. Equations for this purpose are typically non-linear and are

® tted to data garnered from a sample of felled trees. Because the cumulative bole volume

of each tree is measured to numerous upper-bole locations, correlations between measure-

ments within a tree are likely. A mixed-effects model is ® tted to account for this

within-subject (tree) correlation structure, while also portraying the sigmoidal shape of the
cumulative bole volume pro® le.

1 Introduction

Since the introduction of regression methods into forestry more than 60 years ago,
it has been common to ® t a regression model to predict the woody volume in the
bole of a standing tree. Morphological differences among species and even
intra-speci® c differences caused by varying physiographic, climatic and other
environmental effects generally require that different equations be used forÐ or at
least that a particular equation be ® tted separately to data fromÐ each regional
population of tree species to which it eventually will be applied for the purpose of
volume prediction. The volume of interest may include the bark (outer-bark
volume) or not (under-bark volume), and it may comprise the entire bole or only
the portion of it between stump level and a stipulated point on the upper bole.
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Equations of the last sort are known as merchantable volume equations, because
the upper-bole point is often determined by a minimum diameter that establishes
a merchantability threshold, above which there is too little volume in the tip of the
bole to convert to a merchantable product economically. Regardless of the type of
volume (outer- or under-bark; total-bole or merchantable) that serves as the
response variable in the model, the set of covariates included in the model must
be restricted to the relatively small set of overall tree dimensions that can be
measured quickly, yet accurately in the forestÐ otherwise, the ® tted model will
never be applied. Almost universally, the bole diameter at breast height (D) and
total tree height (H) comprise this set. Breast height, which is typically 1.3 or
1.37 m above ground, is the customary height at which to measure a tree’s reference
diameter, i.e. D, to avoid the buttressing in the lower reaches of the stem. In some
cases, an alternative to H is the height Hm to the merchantable diameter limit.

Although volume equations are developed to provide a prediction of the volume
of standing trees, these equations are ® tted to measurements conducted on felled
trees, so as to minimize measurement error and its consequent effect on parameter
estimation. For example, a sample of trees is selected that spans the range of tree
sizes for which the ® tted equation is intended to be applicable. Each sample tree
is felled, its bole delimbed and cut into short sections of possibly unequal lengths.
The volume of each section is determined and accumulated with the volumes of
lower sections. This is repeated to the top of the tree bole if total-bole volume is
the response variable in the regression model, or to the point where the bole’s
diameter has tapered to the merchantable diameter, if merchantable volume is the
response variable. Almost always, the number of observations of cumulative bole
volume will vary among trees, according to tree size; short trees may have as few
as two, whereas tall trees will have 30 or more. Therefore, the observed sample will
be unbalanced, in the sense of having unequal numbers of observations per
subject.

As implied above, a multitude of different bole-volume equations have been
developed over the years and, with little effort, one can easily identify hundreds for
just temperate-zone tree species. Part of the reason for the multiplicity of volume
equations derives from the on-going change in merchantability standards over time.
While this change is dictated partly by the anticipated end-use product, it is also
a result of technological advances in milling and ¯ uctuations in the economic value
of the raw material. It has been commonplace to ® t a new bole-volume equation,
as required, in response to changes in the upper-bole merchantability diameter
limit, which is a costly and perhaps duplicative endeavor.

Burkhart (1977), however, suggested an alternative strategy in which the upper-
bole diameter appears as a pseudo-covariate in the volume equation. Given an
appropriately ® tted volume equation of this sort, one can then evaluate it with
measured values of D and H on a standing tree, in order to predict the mer-
chantable volume, say Vd , to an upper-bole diameter d. When d 5 0, V0 constitutes
the total-bole volume. For a given species, therefore, a single equation can be used
to predict the merchantable volume to a diameter limit d on one occasion, and to
a different upper-bole diameter on another occasion. The forestry literature
features a limited but growing number of applications of this type of model; see,
for example, Golden et al. (1982) and Knoebel et al. (1984) with yellow poplar
(Liriodendron tulipifera L.); Van Deusen et al. (1981), Newberry and Burk (1985)
and Amateis and Burkhart (1987) with loblolly pine (Pinus taeda L.); Bailey (1994)
with slash pine (Pinus elliotii Engelm.); and Gregoire and Schabenberger (1995)
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FIG. 1. Yellow poplar cumulative outer-bark bole volume: empirical pro® les.

with sweetgum (Liquidambar styraci¯ ua L.). The customary approach has been to
express Vd as the product V0Rd , where Rd represents the ratio of the merchantable
volume to the total-bole volume. Newberry and Burk (1985) and Avery and
Burkhart (1994) refer to this type of model as a `volume-ratio equation’ and we
also adopt this lexicon.

Figure 1 portrays the empirical bole-volume function for each of six yellow
poplar trees of various sizes, where the cumulative bole volume is plotted against
r 5 1 2 d /d s, where d s is the stump diameter of the tree. At the base of the tree,
where d 5 d s , the cumulative bole volume obviously is Vds 5 0; at the tip of the tree,
d 5 0 and the cumulative volume V0 is the total-bole volume. Gregoire and
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Schabenberger (1995) remarked on the similarity of cumulative bole volume
pro® les to cumulative distribution functions, and to many biological growth
functions. Previously, Van Deusen et al. (1981) had ® tted R d as an exponential
function in d /D, and Newberry and Burk (1985) ® tted the SB distribution
function, both of which captured the essential sigmoidal shape of the response
curve.

Because the multiple measurements on each tree are likely to be correlated,
Gregoire and Schabenberger (1995) proposed a mixed-effects model to account
for the within-subject correlation. Their work in this area was novel within forestry,
because all other modelling efforts had ignored the within-subject correlations. In
the present work, a modi® ed type I extreme value distribution function is incorpor-
ated into the ratio (Rd) term, and we exemplify a model-® tting approach based on
Gaussian maximum likelihood and on generalized estimating equations (GEEs) for
continuous responses.

2 Model development

The customary approach to developing volume-ratio equations (cf. Avery &
Burkhart, 1994) has been to ® t a model for the total-bole volume separately from
that of the ratio term. However, it seems more reasonable to pursue a joint
estimation of both terms in the composite model.

Since Spurr (1952), an extensively used expression for V0 has been the simple
linear regression

V0 5 b 1 1 b 2X

where X 5 D 2H/1000. Our introduction of the scaling factor 1/1000 puts b 2 on the
same scale as b 1.

For the ratio term, we chose Rd 5 exp( 2 b 3t 9 exp( b 4t)), where t 5 d /D, and
t 9 5 t /1000. This function resembles a type I extreme value function. Rd is always
positive and tends to unity as d ® 0; thus, it ensures the logical constraint that Vd

cannot exceed V0 and cannot assume a negative value. It exhibits an interior
in¯ ection point, and is parsimonious. Moreover, we have found it to be very
¯ exible in adapting to a wide variety of bole-volume pro® les, such as those shown
in Fig. 1. Finally, when imbedded in a mixed-model framework as described
below, the above expression for Rd is considerably more straightforward than the
SB distribution function used by Newberry and Burk (1985) with its attendant
dif® culties in percentile prediction.

Let Vid j denote the observation of the cumulative bole volume on the ith tree
(i 5 1, . . . , n; j 5 1, . . . , m i) to the upper-bole diameter d j at the jth location on
the bole. Let Vi0 5 b 1 1 b 2X i , where X i 5 D2

i H i /1000, and let R id j 5
exp( 2 b 3 t 9ije b 4 t i j), where t ij 5 d j /Di and t 9ij 5 t ij /1000. The ® xed-effects version of
our volume-ratio model is

Vid j 5 ( b 1 1 b 2X i)exp( 2 b 3 t 9ije b 4t i j) 1 « i j

To account for the intra-individual variation that arises from the multiple measure-
ments of the bole volume on each tree, we opted to add a random element to
b 5 ( b 1, b 2, b 3, b 4)9 , in preference to modelling the within-subject covariance
directly through the joint distribution of « ij , « ik, j Þ k (cf. Jones, 1990; Gregoire et
al., 1995). Both Davidian and Giltinan (1993) and Pinheiro et al. (1994) have
suggested a model-building strategy for mixed-effects models that begins with all



Non-linear mixed-effects prediction 261

effects as random. Accordingly, we regard bi 5 (b1i , b2i , b3i, b4i) 9 as a random
vector, i.e. bi 5 b 1 g i, where g i 5 ( g 1i, g 2i, g 3i, g 4i) 9 , and

E[bi] 5 b

var[bi] 5 E[(bi 2 b )(bi 2 b ) 9 ] 5 E[g ig 9i ] 5 s 2 D , " i

and
E[g i « ij] 5 0, " i , j

The resulting full mixed-effects version of our volume-ratio model is

Vid j 5 (b1i 1 b2iX i)exp( 2 b3t 9ijeb4 t i j) 1 « ij

5 f(Q i j; bi) 1 « ij

(1)

where Q ij represents the set of covariates {X i , t ij , t 9ij}.
Sheiner and Beal (1980) pioneered procedures for ® tting mixed-effects non-

linear models. In recent years, there has been a ¯ urry of work in this area (see, for
example, Lindstrom & Bates, 1990; Vonesh & Carter, 1992; Davidian & Gallant,
1993; Davidian & Giltinan, 1993, 1995; Wol® nger, 1993; Schabenberger, 1995;
Gregoire & Schabenberger, 1995). Our approach is to approximate the marginal
distribution of the response vector by expanding f(´) in a ® rst-order Taylor series,
as did Sheiner and Beal, and Lindstrom and Bates. One can then derive maximum
likelihood or restricted maximum likelihood estimators, based on the approximate
marginal density of the linearized response. Typically, a Gaussian distribution is
assumed.

A ® rst-order Taylor expansion of our model in equation (1), around the values
b Ä , g Ä i , gives the approximating linear function as

Vid j 8 f(Q i j; b Ä , g Ä i) 1 z 9ij( b 2 b Ä ) 1 w 9i j(g i 2 g Ä i) 1 « ij

where

z 9i j 5
 f(Q i j; b , g i)

 b 9 U b Ä , g Ä i

w 9ij 5
 f(Q i j; b , g i)

 g 9i U b
Ä
, g Ä i

Rearranging yields
Yid j 8 z 9ij b 1 w 9ij g i 1 « ij (2)

where
Yid j 5 Vid j 2 f(Q i j ; b Ä , g Ä i) 1 z 9ij b Ä 1 w 9ij g Ä i

Equation (2) is a linear mixed model where the observed cumulative bole volume
Vid j has been replaced by what Gregoire and Schabenberger (1996) labelled a
`pseudo-response’ Yid j .

Let Yi 5 (Yid i
, . . . , Yidmi

) 9 denote the vector of pseudo-observations for the
ith subject tree, and let Zi 5 (z 9i1, . . . , z 9im i

) 9 , Wi 5 (w 9i1, . . . , w 9im i
) 9 and

« i 5 ( « i1, . . . , « im i) 9 . For the ith tree, the approximated linear model of cumulative
bole-volume is

Yi 5 Zi b 1 Wi g i 1 « i (3)

where the conditional variance is var[Yi|Zi, Wi, g i] 5 s 2Im i , and the marginal
variance is

var[Yi|Zi] 5 s 2(Wi D W 9i 1 Im i) 5 s 2 f i (4)
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3 Likelihood estimation under a Gaussian model

When both « i and g i are independently Gaussian distributed, minus twice the
logarithm of the approximate marginal likelihood is

LÄ 5 O
n

i 5 1

(m i ln(2p ) 1 m i ln(s 2) 1 ln|f i| 1 s 2 2ri f 2 1
i r 9i )

where ri 5 Yi 2 Zi b . It is straightforward (cf. Jones, 1993; Wol® nger & O’Connell,
1993; Diggle et al., 1994, p. 63) to maximize LÄ analytically for b and s 2, and then
estimate the unique parametric components of D that jointly maximize the
resulting concentrated (or pro® le) likelihood. Letting D Ã denote this estimate, one
can estimate

b Ã 5 X Ã 2 1 S O
n

i 5 1

Z 9i f Ã i
2 1 Yi D (5)

where

X Ã 5 O
n

i 5 1

Z 9i f Ã i
2 1 Zi (6)

and
varÃ [ b Ã ] 5 s Ã 2 X Ã 2 1

is the estimated variance of b Ã . The random effects can be predicted by

g Ã i 5 D Ã W 9i f Ã i
2 1rÃ i (7)

where rÃ i 5 Yi 2 Zi b Ã . In a linear model context, equation (7) has been termed an
empirical best linear unbiased predictor (Harville & Carriquiry, 1992), or EBLUP
for short.

Because the pseudo-responses and the derivative matrices in equation (3)
depend on the current estimates, the linear mixed model of equation (3) is ® tted
repeatedly until successive changes in the estimates or the likelihood are inconse-
quential. At this point, the scale parameter s 2 can be estimated by

s Ã 2 5 M 2 1 O
n

i 5 1

rÃ i f Ã i
2 1rÃ 9i , where M 5 O

n

i 5 1

m i (8)

In their approach, Sheiner and Beal (1980) opted to expand the non-linear
response around b Ä and g Ä i 5 E[g i] 5 0. In contrast, Lindstrom and Bates (1990)
chose to expand around b Ä and the current solutions of the random effects.

Minus twice the restricted Gaussian likelihood of equation (2) is

LÄ R 5 O
n

i 5 1

[m i ln(2p ) 1 l m i ln(s 2) 1 ln|f i| 1 s 2 2ri f 2 1
i r 9i 1 ln|Zi f 2 1

i Z 9i |]

where l 5 M 2 1(M 2 p), and p is the dimension of b . Because restricted maximum
likelihood estimators (REMLs) of variance components are less biased than
corresponding maximum likelihood estimators, they have come to be preferred, in
general. The restricted likelihood estimators developed by Lindstrom and Bates
(1990) were shown by Wol® nger (1993) to be the solutions to the linear system

S Z9 Z Z9 W
W 9 Z W 9 W 1 In ^ D 2 1 D S b Ã

g Ã D 5 S Z 9 Y
W 9 Y D

where Z9 5 (Z91, . . . , Z9n), W 9 5 diag(W 9i ), Y 9 5 (Y 91, . . . , Y 9n), g Ã 9 5 ( g Ã 91, . . . , g Ã 9n).
The solutions to this system are equivalent to equations (5) and (7).
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4 Generalized estimating equations

Schabenberger (1995) discusses how GEEs can be utilized for non-linear continu-
ous response models. It is based on an estimating function (Godambe, 1960) that
involves the ® rst two marginal moments of the response distribution only, so it is
semi-parametric in that higher-order moments are unspeci® ed.

The key idea (cf. Zeger et al., 1988) is to approximate the ® rst two marginal
moments from conditional moments, taking a ® rst-order Taylor series expansion
of equation (1) around E[g i] 5 0. This yields

V *
id j 8 f(Q ij ; b , 0) 1 w 9i jg i 1 « ij

and, consequently, we have

E[V *
id j

] 8 f(Q ij ; b , 0)

var[V *
id j] 8 s 2(1 1 w 9ij D wij)

Let
Vi 5 (f(Qi1; b ; 0), . . . , f(Q im i; b , 0)) 9 1 « i

m i 5 E[Vi] and Zi 5  m i/  b . The GEEs for b | D Ã become

U( b ; D Ã , Vi, " i) 5 O
n

i 5 1

Z9i f Ã 2 1
i (Vi 2 m i) 5 0 (9)

One then solves equation (9) iteratively, such as by a Newton± Raphson algorithm
with Fisher scoring, which leads to the following update of the current estimate,
b Ã (u) say:

b Ã (u 1 1) 5 b Ã (u) 1 S O
n

i 5 1

Z 9i f Ã 2 1
i Zi D 2 1 O

n

i 5 1

Z 9i f Ã 2 1
i (Vi 2 m i)

This is as shown in Schabenberger and Gregoire (1996). Since the estimates b Ã (u )

depend on D , a moment estimator can be used to update D Ã after each iteration.
From f Ã i 5 Wi D Ã W 9i 1 Im i

, the following consistent estimators are suggested:

D Ã 5 n 2 1 O
n

i 5 1

(W 9i Wi) 2 1W 9i [s Ã 2 2(Vi 2 m Ã i)(Vi 2 m Ã i) 9 2 Im i
]Wi(W 9i Wi) 2 1 (10)

and

s Ã 2 5 M 2 1 O
n

i 5 1

(Vi 2 m Ã i) 9 f Ã 2 1
i (Vi 2 m Ã i)

Following the main result in Liang and Zeger (1986), b Ã will be asymptotically
unbiased and Gaussian distributed, provided that D and s 2 are estimated consist-
ently. At convergence of the algorithm, EBLUPs for the random effects (equation
(8)) are obtained as in the fully parametric implementation, and an asymptotically
unbiased estimator of var[ b Ã ] is as shown in equation (7).

Irrespective of whether or not a parametric likelihood approach or a semi-para-
metric GEE approach to estimation is adopted, an asymptotically unbiased estima-
tor of the variance of g Ã i 2 g i is (cf. Laird & Ware, 1982; Gregoire et al., 1995):

varÃ [g Ã i 2 g i] 5 D Ã [Iq 2 W 9i f Ã 2 1
i (Im i 2 s 2Zi X Ã 2 1Z9i f Ã 2 1

i )Wi D Ã ]

where q is the dimension of D .
Let VÊ 5 f(QÊ ; b Ã , E[ g ]) denote the marginal estimate of E[Vd|QÊ ] for some

stipulated set of covariate values indicated by QÊ . An asymptotic (1 2 a )100%
con® dence interval is

VÊ 6 z a s Ã {zÊ 9 X Ã 2 1zÊ }1/2 (11)
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where zÊ 9 5  f(QÊ ; b Ã , 0)/ b Ã 9 , and where z a is the (1 2 a /2) quantile of the standard
Gaussian distribution. If VÊ 5 f(QÊ ; b Ã , g Ã ) instead denotes the prediction of Vd, then
one will normally be compelled to stipulate g Ã 5 E[g ], unless prediction is being
made to a subject in the data to which the model was ® tted. Regardless of the value
of g Ã used to evaluate VÊ , an asymptotic (1 2 a )100% prediction interval is

VÊ 6 z a s Ã {zÊ 9 X Ã 2 1zÊ 1 wÊ 9 D Ã wÊ 1 1}1/2

5 Data

The trees pro® led in Fig. 1 were six of 336 trees that were felled and measured for
the purpose of developing a bole-volume prediction equation for yellow poplars in
the southern Appalachian region of the southeastern US. Tree heights H ranged
from 3.7 to 42.1 m, averaging 27.7 m; tree breast-height diameters D ranged from
1.8 to 76.2 cm, averaging 33.6 cm; and their total bole volumes V0 ranged from
0.001 to 7.362 m3, averaging 1.544 m3. The outside-bark diameter of each stem
was measured at intervals of 1.2 m along the felled stem and the volume of each
1.2 m-section was computed as the product of its length with its average cross-
sectional area. The diameters were measured to the nearest 0.25 cm and the
heights were measured to within 6 3 cm. There was an average of 21 bole-diam-
eter measurements per tree, yielding a total of 6972 observations of the cumulative
bole volume and these were used to ® t equation (1).

The results that we report were obtained with a program written for the task in
the GAUSS programming language. All the REML results were checked with the
NLINMIX macro available from SAS of Cary, NC.

6 Results

Although the linearized version of equation (1) was ® tted by both REML and
GEEs, we were unsuccessful in ® tting it by either method with all effects random.
Evidently, for these yellow poplar data, a completely random structure cannot be
supported, i.e. the model is over-parameterized. While the GEE approach im-
plictly uses a linearization around E[g i], the REML approach can be implemented
by expanding around g Ã i or E[ g i]. We tried both types of expansion, to no avail.
Subsequent investigation indicated that even versions of equation (1) with only
three random effects were similarly over-parameterized, when ® tted both to the
yellow poplar data and to similar sets of data from other tree species.

Consequently, we examined models with at most two effects random, with the
results shown in Table 1 for both expansions. For models with more than one
random effect, one can choose to restrict D to a simple diagonal structure
(uncorrelated random effects), or not. We ® tted all models both ways. In some
cases, when D was unrestricted, the resulting model could not be ® tted, pre-
sumably as a result of over-parameterization. In cases where the model could be
® tted with D unrestricted, the difference in the observed 2 2 ln LÄ R from that
obtained with a simple diagonal structure was very minor. We opted to present
results for the more parsimonious model only.

From the results in Table 1, we concluded that (a) any model with one or more
random effect is a major improvement over a purely ® xed-effects model; and (b)
models with two random effects are substantially better than those with a single
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TABLE 1. Observed 2 2 ln LÄ R when equation
(1) was ® tted under various combinations of

random effects

Expansion locus

Random effect(s) g Ã i E[g i]

None 45 490 45 490

g 1 38 070 38 082

g 2 37 594 37 608

g 3 41 311 41 374

g 4 41 885 42 082

g 1, g 3 32 890 33 081

g 2, g 3 32 393 32 532

g 1, g 4 33 194 33 446

g 2, g 4 32 697 32 952

Note: In all cases, D was ® tted with a simple
diagonal structure.

random effect. The observed value of 2 2 ln LÄ R for the model linearized around g Ã i

is always slightly smaller than that for the model linearized around its expectation,
although it is questionable whether or not there is any meaningful difference.

Among the models with two random effects, there is only a minor difference in
the observed likelihoods. Because the model with b2 and b3 both random is
arguably superior to the others, we explore its performance in more detail. To be
explicit, the following results pertain to

Vid j 5 ( b 1 1 ( b 2 1 g 2i)X i)(exp{ 2 ( b 3 1 g 3i)t 9ije b 4t i j} 1 « ij (12)

Table 2 shows the REML-based parameter estimates and, for the sake of compari-
son, we also include the GEE estimates. There is little apparent difference between
the three alternative estimates of b 2 and b 4 and their estimated standard errors.
The GEE estimate of b 1 is about 20% larger than that of either REML estimate,
whereas the REML estimate of b 3 obtained by expanding around g Ã i is about 20%
smaller than that of either the GEE or the REML estimate obtained by expanding
around E[ g i]. The importance of these differences is questionable, however, when
one looks at Fig. 2, in which are shown the GEE and REML (expansion around
g Ã i) ® tted pro® les for the six trees for which empirical pro® les were exhibited in Fig.
1. The full line that represents the REML ® t overlays the dash± dot line that
represents the GEE ® t nearly perfectly for all but the very smallest tree. We found

TABLE 2. Parameter estimates of equation (10)

Expansion locus

g Ã i E[g i] GEE

b 1 0.25 (0.118) 0.26 (0.120) 0.31 (0.115)

b 2 2.30 (0.012) 2.30 (0.012) 2.30 (0.011)

b 3 2.63 (0.057) 3.21 (0.067) 3.23 (0.066)

b 4 6.80 (0.020) 6.56 (0.021) 6.55 (0.021)

s 2
b2 0.023 0.023 0.016

s 2
b3 0.218 0.235 0.140

s 2 4.8 4.9 5.1
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FIG. 2. Yellow poplar cumulative outer-bark bole volume: ® tted pro® les.

this to be true generally: as we scanned the ® tted pro® les, plotted individually for
each of the 336 trees, the model ® tted the very smallest trees slighly less well than
it did the large and intermediate-sized trees, and it is only with these very small
trees that there is a noticeable departure of the GEE ® t from the REML ® t. In no
case was this departure so sizeable to raise concern about a systematic lack of ® t.

For the sake of comparison, we have shown the ® tted pro® le from the purely
® xed effects model as the dashed line in Fig. 2. While the ® xed effects model
retains the sigmoidal shape of the cumulative bole volume pro® le, it fails to trace
an individual tree’s form, unless it coincides with the average trend in the
population.



Non-linear mixed-effects prediction 267

FIG. 3. Yellow poplar cumulative outer-bark bole volume residuals. Trees sequenced in order of breast
height diameter D. REML ® t of mixed model with b2 and b3 random, using

V 5 (b1 1 b2 X)exp( 2 b3te b4 t /1000)

To date, diagnostic tools for non-linear mixed-effects models are generally
lacking. Pinheiro et al. (1993) looked at box plots of raw residuals by subject.
There is some question concerning the informativeness of raw residuals in a
non-linear setting (cf. Seber & Wild, 1989, p. 174), because intrinsic curvature
and parameter effects will affect the magnitude of residuals in a way that generally
cannot be discerned. None the less, residual plots are an appealing diagnostic tool.
In Fig. 3(a), we show the raw residual (Vid j 2 VÃ id j) on the vertical axis versus VÃ i0
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on the horizontal axis for every 10th tree, after having sequenced the trees in order
of increasing diameter at breast height D. The square symbol denotes the residual
at the tip of the tree, i.e. the residual Vi0 2 VÃ i0, which is highlighted because of the
importance of predicting the total-bole volume well. The diamond symbol repre-
sents the residual at the base of the tree. The circles are the residuals at the
intermediate points on the bole. A pattern of increasing dispersion with increasing
tree size is evident. When the residuals are put on a relative basis, i.e.
100%(Vid j 2 VÃ id j)/Vid j , as in Fig. 3(b), the dispersion pattern reverses. The relative
residuals display the slightly poorer ® t of the model to the very smallest trees.

Compared with differences among the alternative estimates of b Ã j, the GEE
estimates of the covariance parameters differed much more from the correspond-
ing REML estimates. To examine the effect of these differences, we estimated

FIG. 4. Yellow poplar cumulative outer-bark bole volume for a tree with D 5 33.5 cm and H 5 29 m: 95%
con® dence bands for marginal response; (a) REML; (b) GEE.

FIG. 5. Yellow poplar cumulative outer-bark bole volume for a tree with D 5 33.5 cm and H 5 20 m: ratio
of 95% con® dence band widths.
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95% con® dence interval (equation (11)) bands using both the REML and GEE
parameter estimates for a hypothetical tree of size D 5 33.5 cm and H 5 29 m,
which corresponds closely to the average D and H values among the 336 yellow
poplar trees. As seen in Fig. 4, the corresponding con® dence interval bands are
nearly indistinguishable. The ratio of the REML interval width to that of the GEE
interval is plotted in Fig. 5, from which we conclude that asymptotic inference
about the estimated marginal response is affected inconsequentially by the choice
of estimation procedure.

7 Discussion

As is evident from a comparison of the alternative estimates in Table 2 and from
the graphical comparisons in Figs 2 and 4, there is little difference between REML
and GEE estimation in the present setting. The GEE ® t is always closer to the
REML ® t of the model that is linearized around E[ g i], presumably because our
GEE implementation uses the same expansion locus.

The semi-parametric GEE approach requires only minimal assumptions: the
correct speci® cation of a mean model and consistent estimation of the covariance
parameters. It is less restrictive in this sense than Gaussian-based likelihood
estimation. The lack of distributional assumptions, however, practically restricts
the choice of covariance parameter estimation to the method of moments.
Moment estimators are neither unique nor necessarily useful. As seen from
equation (10), D Ã can be non-positive de® nite. We have found such occurrences to
be a useful indication of over-parameterized covariance structures, rather than a
hindrance.

However, semi-parametric estimation is less computationally demanding, be-
cause the covariance parameters can be estimated in closed form after updates of
the ® xed effects are obtained, whereas they are obtained iteratively in the paramet-
ric implementation. One may opt to use GEE estimates as starting values for
subsequent parametric estimation. As far as predictions are concerned, our results
clearly show that little or nothing is gained in predictive capability by such an
approach. The asymptotic basis for inference is also the same in either approach.
We believe that semi-parametric estimation in non-linear mixed models constitutes
a valid methodology in its own right, and is not a mere front-end vehicle for
likelihood inference, although this usage is sensible at times.

The volume-ratio equation developed here is a substantial improvement over
its precursors that have appeared in the foresty literature, because the random
effects serve to individualize the ® t of the model to each subject tree and account
for the inter-tree variation, through the marginal covariance structure D . More-
over, because equation (1) mimics the in¯ ection of the empirical cumulative bole
volume pro® le (Fig. 1), it provides a superior ® t than models that are unin¯ ected.

In principle, the conditional variance could be modelled more generally as

var[Yi|Z i, Wi , g i] 5 s 2R i

where R i is speci® ed in a manner that accounts for residual intra-individual
correlation around E[Yi|Z i , Wi , g i]. In our experience, the mixed-effects model
effectively annihilates the within-subject correlation, in agreement with the obser-
vation by Jones (1990) that random subject effects may account for within-subject
covariances, and vice versa. Gregoire et al. (1995) concluded similarly. However,
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R i could also be speci® ed to account for the interindividual heteroscedasticity,
such as is evident in Fig. 3, if warranted. In this application, the heteroscedasticity
was not deemed severe enough to justify the added complexity that would be
introduced.

The scientist (Beck, 1963) who felled, sectioned and measured the sectional
diameters (outer-bark) and heights of the 336 yellow poplar trees also measured
the corresponding under-bark diameters. As is frequently the case, there was an
interest and need to ® t a volume equation for the under-bark volume as well as for
the outer-bark volume. Under-bark volume equations have always been ® tted
separately from outer-bark volume equations. In view of the strong correlation
between under-bark and outer-bark volume, Gregoire et al. (1994) ® tted the two
volume-ratio equations jointly, using the pooled two-stage procedure proposed by
Davidian and Giltinan (1993). A similar tactic could be employed with the
approach pursued in the present paper, but such work remains to be done.
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