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Counterillumination, the masking of an animal’s silhouette with ventral
photophores, is found in a number of mesopelagic taxa but is difficult to
employ because it requires that the animal match the intensity of downwel-
ling light without seeing its own ventral photophores. It has been proposed
that the myctophid, Tarletonbeania crenularis, uses a photophore directed
towards the eye, termed an eye-facing photophore, as a reference standard
that it adjusts to match downwelling light. The potential use of this
mechanism, however, has not been evaluated in other fishes. Here, we use
micro-computed tomography, photography and dissection to evaluate the
presence/absence of eye-facing photophores in three families of stomiiform
fishes. We found that all sampled species with ventral photophores capable
of counterillumination possess an eye-facing photophore that is pigmented
on the anterior and lateral sides, thus preventing its use as a laterally
directed signal, lure or searchlight. The two species that are incapable
of counterillumination, Cyclothone obscura and Sigmops bathyphilus, lack an
eye-facing photophore. After determining the phylogenetic distribution of
eye-facing photophores, we used histology to examine the morphology
of the cranial tissue in Argyropelecus aculeatus and determined that light
from the eye-facing photophore passes through a transparent layer of
tissue, then the lens, and finally strikes the accessory retina. Additionally,
eight of the 14 species for which fresh specimens were available had an
aphakic gap that aligned with the path of emitted light from the eye-
facing photophore, while the remaining six had no aphakic gap. These
findings, combined with records of eye-facing photophores from distantly
related taxa, strongly suggest that eye-facing photophores serve as a
reference for counterillumination in these fishes.

1. Introduction

The open ocean is the largest habitable volume on earth and poses particular dif-
ficulties for the organisms living there. At mesopelagic depths (200 m-1000 m),
the intensity of downward radiance is approximately 200 times that of upward
radiance [1], so opaque organisms—even those with white ventral surfaces—
create a silhouette that can be detected from below. To counteract this, a
number of mesopelagic taxa (e.g. certain squid, crustaceans and fishes, including
sharks) have arrays of ventral photophores that replace the downwelling light
blocked by the body of the animal [2-6]. This form of camouflage, called counter-
illumination, is particularly common in stomiiform and myctophiform fishes, two
of the most speciose and abundant orders of mesopelagic fishes [7].

The primary challenges for effective counterillumination are matching the
intensity, spectrum and angular distribution of downwelling light. The ventral
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Figure 1. Micro-CT images of (a) Sternoptyx pseudobscura, (b) Argyropelecus hemigymnus and (c) Sternoptyx diaphana showing the presence and orientation of the
photophores from iodine-stained specimens. The eye-facing photophore and the lens are shown in the inset panels. Eye-facing photophores and ventral photophores
denoted by the arrows and brackets, respectively. Top: lateral view. Bottom: ventral view. All scale bars are 5 mm. (Online version in colour.)

photophores of mesopelagic fishes are known to emit light
with a spectrum that is a close match to the spectrum of
downwelling light [6,8]. Additionally, at least two stomiiform
species, Chauliodus sloani and Argyropelecus affinis, have photo-
phores that use guanine reflectors to match the angular
distribution of downwelling light [9]. The photophores of
Stomiiformes and Myctophiformes are under neural control
[10,11], and certain mesopelagic fishes (Dasyscopelus obtusirostris
and Dasyscopelus spinosus sensu Martin et al. [12], formerly
Myctophum obtusirostre and Myctophum spinosum, respecti-
vely) adjust their ventral light emission in response to
changes in downwelling light intensity over a range of up
to 15 000-fold [6,13].

Despite evidence that counterillumination matches the
intensity of downwelling light, little is known about the feed-
back system that mediates this process, given that these fishes
are unable to see their own ventral photophores. It has been
hypothesized that fishes may use a reference photophore,
with an intensity correlated with the intensity of the ventral
photophores, to emit light towards the eye (termed eye-
facing photophore hereafter), allowing modulation of ventral
bioluminescence until it matches the downwelling light
viewed by the eye [4,14]. The potential use of such a reference
photophore mechanism, however, has only been examined in
one species, the myctophid Tarletonbeania crenularis [14]. To
evaluate the role of an eye-facing photophore as part of a
more general mechanism of regulating counterillumination,
we characterized the presence/absence and orientation
(eye-facing or not) of the orbital photophores of 36 species
of stem group Stomiiformes in a phylogenetic context (we
sampled 15 of 18 genera in the tree from Rabosky et al.
[15]). In addition to those traits, we assessed the presence
of an aphakic gap, a lensless section of pupil that allows for
increased light capture, for the 14 species for which we
were able to acquire photographs of fresh specimens. We
then examined the morphology of the eye-facing photophores
and surrounding tissues in one species in which the mor-
phology of the retina is well characterized, the hatchetfish
Argyropelecus aculeatus, to determine whether light from its
eye-facing photophore reaches the eye, and to explore other
potential functions of the emitted light.

We focused on stem stomiiform fishes, members of the families
Gonostomatidae (bristlemouths), Sternoptychidae (hatchetfishes)
and Phosichthyidae (lightfishes). We chose these families
because they are known to possess either a pre-, ant-, or suborbi-
tal photophore, but do not have the proliferation of cranial
photophores seen in the crown group Stomiidae. The additional
cranial photophores in stomiids suggests functional diversifica-
tion, with many of these photophores hypothesized to function
as searchlights, a process that does not necessarily require the
same feedback as counterillumination [16,17].

Twenty-one specimens from 21 species were collected via
high-speed rope trawl or 10m? MOCNESS in the Gulf
of Mexico between 2009 and 2017. Immediately following
collection, animals were placed in 10% formalin in buffered
seawater and stored until use, at which point they were trans-
ferred to 70% ethanol. One specimen of A. aculeatus was
collected via midwater Tucker trawl from Baltimore Canyon
near 38.05° N 73.7° W and immediately placed in 2% glutaralde-
hyde in buffered seawater for use in histology (the A. aculeatus
specimen collected previously in the Gulf of Mexico was
stained for micro-CT). The remaining 15 specimens were
acquired via loan from the Smithsonian Institution Museum of
Natural History, Washington, DC, USA. One specimen per
species was used because, while there are intraspecific differ-
ences in photophore patterning in some deep-sea fishes
associated with changes in body size and population divergence
[18-20], to our knowledge there are no shifts in the overall
direction of photophores within a species (i.e. a photophore
directed into the eye or away from the eye). Additional details
on specimen collection, including museum acquisition numbers
and trawl depth, can be found in electronic supplementary
material, table S1.

Of the 36 species considered here, 25 from 13 genera were included
in a comprehensive molecular phylogeny of ray-finned fishes [15].
Those that were not found on the phylogeny were not included in
the models of discrete trait evolution because they could not be
unambiguously placed on the tree. The full tree was pruned to
include only the species surveyed in this analysis using the
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Figure 2. Light path from eye-facing photophore of three representative species. Micro-CT images from (a) A. hemigymnus, (b) S. diaphana and () M. weitzmani,
showing zoomed-in side and top views of the eye-facing photophore and the eye. The dashed lines for all views are parallel to face of the photophore closest to the
eye. Arrows are perpendicular to the dashed lines and denote the predicted light path. The top view for S. diaphana is in the plane of the dorsal surface of the
photophore, not in the plane of the most-dorsal surface of the body, because the photophore is obscured dorsally by the musculature (note——the musculature does
not extend into the light path between the photophore and the eye). (Online version in colour.)

packages ‘ape v5.3" [21] and ‘phytools v0.6-60" [22] in R [23].
To determine if there is a phylogenetic signal in the distribution
of eye-facing photophores or ventral photophores that are capable
of effective counterillumination, we calculated Fritz and Purvis’s D
statistic using 1000 permutations with the package ‘caper’ [24,25].
To consider the coevolution of ventral photophores capable of
counterillumination and the eye-facing photophore, we fitted
independent and dependent models of discrete trait evolution in
BayesTraits v. 3.0.1 [26]. All parameters were set to their default
values and the results of each model were compared using
maximum likelihood.

(c) Eye-facing photophore identification

Given their proximity to the skin and the transparent tissue sur-
rounding them, many eye-facing photophores could be identified
under a stereo microscope (M5, Wild, Heerbrugg, Switzerland).
For specimens (5/36) where the presence and orientation of an orbi-
tal photophore could not be inferred from standard imaging, it was
characterized using micro-computed tomography (micro-CT). Prior
to micro-CT scanning, whole fish were stained for two to five days in
a 50 : 50 mixture of 2% aqueous solution of Lugol’s iodine (J. Crows
LLC, Ipswich, NH, USA) and the initial preservation medium
(either 70% ethanol or 10% buffered formalin solution). Micro-CT
was performed using a Nikon XTH 225 ST scanner at the Duke Uni-
versity Shared Materials Instrumentation Facility, which produced
voxels with edge lengths between 1.2 pm and 4.1 pm with beam

settings of 110 kV-190 kV and 43 1A-114 pA. We confirmed via dis-
section that micro-CT can be used to accurately identify both the
presence of a photophore and its orientation because of differential
staining of the lens and photocytes and the asymmetrical
morphology of the photophore (figure 1).

(d) Histology of eye-facing photophore

A block of tissue from Argyropelecus aculeatus containing the photo-
phore, part of the upper jaw, and the tissue between the cornea and
the photophore was excised with a razor blade and partially dehy-
drated in 95% ethanol for 24 h. The tissue was embedded in glycol
methacrylate plastic (GMA) to minimize tissue distortion (Techno-
vit 7100, Kulzer GmbH, Hanau, Germany), and 2 pm thick
sections were cut using a glass knife (Reichert-Jung, Leica, Wetzlar,
Germany). Sections were stained with Picrosirius/Fast Green stain
(0.3 g Sirius Red, 0.3 g Fast Green FCE 300 ml saturated picric acid)
for 3h at 60°C to differentiate between tissue types. Following
staining, samples were rinsed with deionized water, dried and
mounted under a coverslip. Composite images were taken with a
Zeiss Axiocam HRc digital camera on a Zeiss Axiophot microscope
(Zeiss, Oberkochen, Germany).

(e) Characterization of aphakic gaps
To further assess potential morphological specialization that may
permit light from the eye-facing photophore to enter the eye,
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Figure 3. (a) Phylogeny of sampled species of Gonostomatidae, Sternoptychidae and Phosichthyidae pruned from a comprehensive molecular phylogeny of fishes
[15]. Colours indicate the presence or absence of the ventral photophores, the eye-facing photophore and an aphakic gap (where available). Only 25/36 species are
included in the tree, but the remaining 11 species all exhibit ventral photophores capable of counterillumination and eye-facing photophores (Ariagphos eastrapas,
Agyripnus atlanticus, A. brocki, A. ephippiatus, Argyropelecus pacificus, Cyclothone braueri, Maurolicus muelleri, Polyipnus aquavitus, P. nuttingi, P. spinifer, Vinciguerria
powerige). Dissecting scope images show examples of the eye-facing photophore surrounded by melanin in (b) Cyclothone pallida, (c) Argyropelecus lychnus and
(d) Maurolicus japonicus. The eye-facing photophores are denoted by the white arrows. (Online version in colour.)

we assessed the presence and location of the aphakic gap for
species in which we were able to acquire photographs of fresh
specimens (14/36). We used fresh specimens only because
many long-preserved specimens have distortions of the iris and
tapetum that make assessment of the aphakic gap difficult.
In total, we acquired aphakic gap data for 14 of the 36 species
included in the study.

primarily bathypelagic species [30]. While C. obscura has lost
all photophores, S. bathyphilus maintains small masses of biolu-
minescent tissue known as secondary photophores and one
short series of organized photophores on the ventral surface.
These photophore arrays are unlikely to be sufficient for effec-
tive counterillumination, although it is possible they are used
to disrupt the silhouette [31,32].

The phylogenetic distributions of ventral photophores
capable of counterillumination and the eye-facing photophore,

3. Results when considered independently, were not significantly differ-
PR S R g ; ent than expected under random phylogenetic structure or

(a) Phylogenetlc distribution of €ye fa(lng orbital Brownian motion (BM) (D =-0.431; Random: p =0.164; BM:
phOTOphOI’ES p = 0.635); however, this may be an underestimate of the phylo-

Eye-facing photophores were present in all species with ventral
photophores that are capable of counterillumination (34/36
species; for examples of light paths, see figure 2). Additionally,
in at least A. aculeatus, S. diaphana and Maurolicus spp., the path
of the light emitted from the eye-facing photophore intersects
regions of high retinal cell density [27-29]. All eye-facing
photophores were surrounded by a melanin layer on the
side opposite the eye (i.e. anterior side for a photophore
located in front of the eye) and the lateral face (figure 3;
full trait data in electronic supplementary material, table S2).
This pigment layer ostensibly absorbs light that is not propa-
gating towards the eye and thus prevents the eye-facing
photophore from being used as a searchlight, lure, or laterally
directed signal. Conversely, we did not find eye-facing photo-
phores in Cyclothone obscura and Sigmops bathyphilus, two

genetic signal because it does not include the 11 species that
could not be unambiguously placed on the tree. When consid-
ering the coevolution of the two traits, a model of dependent
evolution of eye-facing photophores and ventral photophores
capable of counterillumination provided a better fit for the dis-
tribution of both traits than a model treating both traits
independently (chi-square: p=0.007). Our findings indicate
that the ventral photophores and eye-facing photophores
evolved in a correlated fashion, where the rate of transitioning
to each presence-absence state for each trait depends on the
presence-absence state of the other. This result is in line
with the expected outcome given the one-to-one relationship
between the presence of ventral photophores capable of
counterillumination and eye-facing photophores (figure 3; elec-
tronic supplementary material, table S2). It should be noted,
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Figure 4. Digital illustration of Argyropelecus aculeatus showing the morphology of the eye and eye-facing photophore constructed from micro-CT, histological
measurements, and previously described retinal morphology [27]. Box 1: the eye-facing photophore (p) emits light that passes through a volume of transparent
tissue (tt) and through a dip in the iris (i) reported by Collin et al. [27]. After travelling through the lens, light strikes the accessory retina (ar) while downwelling
light illuminates the main retina (r). Box 2: histological section through the middle of the eye-facing photophore shows photocytes (p), the photophore lens (I) and
a layer of melanin (m) surrounding three sides of the photophore, preventing light from escaping anteriorly or laterally. Note, there is no reflector or filter in the
eye-facing photophore. Additionally, collagen layers (c) flare out from the end of the photophore that the light exits. Once leaving the photophore, light travels
through tissue (tt) that is largely transparent and does not stain with Fast Green. Scale bars: box 1, 500 um; box 2, 100 pm. (Online version in colour.)

however, that there are only two transitions between character
states, and no species that have one trait but not the other.

We found that the eye-facing photophore in A. aculeatus is
enclosed on the dorsal and ventral sides by two layers of con-
nective tissue that flare away from the light-emitting end of
the photophore to allow light propagation towards the eye
(figure 4). Additionally, the lateral and anterior sides of the
photophore are shielded by a layer of melanin that is several
granules (1 pm-21pm) thick. This pigment layer, like the
layer found in other species with an eye-facing photophore, pre-
vents the use of the orbital photophore as a searchlight for
finding prey, a proposed function of the orbital photophores
of many stomiid dragonfishes (the crown group of the order)
[33]. Between the eye-facing photophore and the cornea of the
eye is a region of tissue that is transparent in fresh specimens,
translucent in preserved specimens and does not stain with
Fast Green, suggesting little protein content (and thus presum-
ably minimal scattering). Light exiting the eye-facing
photophore and travelling through this transparent tissue
would be absorbed by the iris in the tubular eyes of other
deep-sea fishes (e.g. Opisthoproctus soleatus) but is able to pass

through a dip in the nasal edge of the iris that is reported by
Collin ef al. [27]. It then presumably passes through the lens
and falls on the accessory retina, likely as an unfocused spot
because the distance between the accessory retina and the
lens is far less than 2.55 times the lens radius (the predicted
focal length for fishes from Matthiessen’s ratio [34]; figure 4).

We found aphakic gaps in eight of the 14 species for which
we could get photographs of fresh specimens (trait data:
figure 3). In A. aculeatus, A. affinis, A. sladeni, 1. ovatus and
V. tripunctulatus the aphakic gap consisted of a dip in the
nasal edge of the iris that exposed the lens to the eye-facing
photophore. Typically, without this dip, the pigmented
iris found in other fishes with tubular eyes would block
light coming from the photophore. In S. diaphana and
S. pseudobscura, the aphakic gap is located ventral to the
lens. The eye-facing photophore in these species is located
on the orbit posterior and dorsal to the lens and directs
light ventrally and anteriorly (figures 1 and 2). The ventral
aphakic gap in Sternoptyx spp. aligns with the light path
from the photophore, allowing the emitted light to enter
the eye. Additionally, at least in S. diaphana, the ventral part
of the retina where the photophore light would fall has a
high density of cells in the ganglion cell layer [28]. In



P. clarus, the aphakic gap is located along the ventral margin
of the lens and the eye-facing photophore is directed poster-
iorly and ventrally, roughly aligning with the location of the
aphakic gap. The remaining six species (C. braueri, C. obscura,
C. pallida, P. mauli, S. elongatus and V. poweriae) do not possess
an aphakic gap. There were no species for which we recorded
an aphakic gap that did not align with the direction of the
eye-facing photophore.

Here, we show that 34 of 36 sampled species of stem
Stomiiformes (of the 53 found on a phylogeny) [15] are coun-
terilluminators based on the presence of ventral photophores,
and that these species have a photophore directed into the
eye that is pigmented in a way that rules out a searchlight func-
tion or use as a laterally directed signal. While behavioural
experiments directly linking the eye-facing photophore to
counterillumination regulation were not possible because
mesopelagic fishes caught in traw] nets are typically deceased
or moribund, we found that the distribution of ventral photo-
phores and the eye-facing photophore are best explained
by a dependent model of discrete trait evolution. That is,
considering complete rows of ventral photophores (a proxy
for counterillumination) and the eye-facing photophore as
correlated traits provides a higher maximum likelihood than
treating the two traits independently. Additionally, a number
of species possess morphological specializations such as
aphakic gaps that permit light from the eye-facing photophore
to enter the eye and strike the retina.

Further supporting the role of the eye-facing photophore in
regulating counterillumination are reports of similar photo-
phores in distantly related counterilluminating species.
Lawry [14] found that the myctophid Tarletonbeania crenularis
has a small photophore dorsal to the eye that casts light on the
ventral part of the retina. Also, barracudinas (Paralepididae) in
the genus Lestrolepis have a small organ anterior to the eye that
is pigmented on the anterior and lateral sides that is presumed
to be bioluminescent [35]. Finally, etmopterid sharks have
small photophores dorsal to the eye that may cast light on
the retina in a similar manner to T. crenularis [36]. While
future work is necessary to systematically describe the distri-
bution and morphology of eye-facing photophores in these
groups of counterilluminating fishes, the widespread

distribution of eye-facing photophores suggests that this
mechanism of counterillumination regulation could extend
beyond Stomiiformes.

The only suggested alternative hypothesis for the function
of the eye-facing photophore is that, by shining light in the
eye, it changes the adaptation state to ‘prime’ the eye (i.e.
lower its sensitivity) and allow the fish to see any potential
prey that are illuminated by a searchlight photophore with-
out blinding itself. Priming the eye is unlikely to be the
function of the eye-facing photophore in these families
because they do not possess a searchlight photophore.
Given this, there is no likely alternative function, to our
knowledge, for a photophore that reduces sensitivity and
increases glare, especially in a light-limited environment
characterized by ocular adaptations that increase sensitivity
(e.g. large pupil, tubular shape, long photoreceptors, spatial
summation, aphakic gaps and accessory retinae [28]). Further
investigation may reveal associations between these other
ocular adaptations and eye-facing photophores. In sum, our
results suggest that stem stomiiformes use a photophore
directed into the eye to calibrate and thereby aid in the
regulation of the intensity of their ventral bioluminescence
for counterillumination camouflage.

All data are available in the text and the electronic
supplementary material.
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