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Abstract

Understanding the influences of dispersal limitation and environmental filtering on the structure of ecological communities
is a major challenge in ecology. Insight may be gained by combining phylogenetic, functional and taxonomic data to
characterize spatial turnover in community structure (b-diversity). We develop a framework that allows rigorous inference of
the strengths of dispersal limitation and environmental filtering by combining these three types of b-diversity. Our
framework provides model-generated expectations for patterns of taxonomic, phylogenetic and functional b-diversity
across biologically relevant combinations of dispersal limitation and environmental filtering. After developing the
framework we compared the model-generated expectations to the commonly used ‘‘intuitive’’ expectation that the
variance explained by the environment or by space will, respectively, increase monotonically with the strength of
environmental filtering or dispersal limitation. The model-generated expectations strongly departed from these intuitive
expectations: the variance explained by the environment or by space was often a unimodal function of the strength of
environmental filtering or dispersal limitation, respectively. Therefore, although it is commonly done in the literature, one
cannot assume that the strength of an underlying process is a monotonic function of explained variance. To infer the
strength of underlying processes, one must instead compare explained variances to model-generated expectations. Our
framework provides these expectations. We show that by combining the three types of b-diversity with model-generated
expectations our framework is able to provide rigorous inferences of the relative and absolute strengths of dispersal
limitation and environmental filtering. Phylogenetic, functional and taxonomic b-diversity can therefore be used
simultaneously to infer processes by comparing their empirical patterns to the expectations generated by frameworks
similar to the one developed here.
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Introduction

Understanding the processes that govern the assembly of local

communities from regional species pools is a fundamental goal of

ecological research, and both stochastic and deterministic factors

are commonly thought to be important. Stochastic factors involve

chance or historical contingency, and include processes such as

dispersal limitation and ecological drift through random birth/

death events [1,2]. Deterministic factors include niche-based

processes such as environmental filtering, competition and preda-

tion [3,4]. It is clear that both stochastic and deterministic processes

are at work simultaneously in most communities [5,6,7,8], and

recent work has focused on evaluating the relative importance of

these two sets of processes and on elucidating the factors that may

shift that relative importance [9,10,11,12,13,14,15].

One approach for inferring the relative influences of stochastic

and deterministic processes is to examine spatial turnover in

community structure by relating the amount of turnover (b-

diversity) to variation in spatial distance and the abiotic environ-

ment [16,17,18,19]. This approach has been widely employed in

studies of taxonomic b-diversity by characterizing communities in

terms of lists of species names with or without information on

relative abundances (reviewed in [20,21]). Several authors have

recently proposed extending this species-based approach by

including functional and phylogenetic information which should

permit inferences that are more directly tied to ecological and

evolutionary processes [22,23].

The inclusion of phylogenetic and functional information may

provide greater insight into the processes governing community

structure, but the utility of these additional layers of information

has not been critically evaluated. An increasing number of studies

have attempted to characterize patterns of phylogenetic and

functional b-diversity [24,25,26,27], and with the increase in

species-level phylogenetic and functional trait data this trend will

continue. However, several impediments exist with respect to

using results from such studies to link b-diversity patterns to the

processes of community assembly. For example, there are a

number of metrics developed for phylogenetic or functional b-

diversity, potentially making comparisons among studies difficult

[20,21,28], yet we lack an understanding of how phylogenetic and

functional b-diversity metrics relate to each other. More

importantly, the field currently lacks an explicit theoretical

framework that can guide interpretation when studies simulta-

neously examine empirical patterns of taxonomic, phylogenetic

and functional b-diversity. In the absence of such a framework, it

will be difficult to move beyond pattern description, especially
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when each type of b-diversity responds in a different way to the

same set of underlying processes.

Researchers have generally assumed that the variance in b-diversity

explained by the environment increases monotonically with the

strength of environmental filtering (e.g., [7,9,11,25,29,30,31,32,33]).

However, Smith and Lundholm [34] recently showed that this

‘intuitive’ expectation is not valid. When community assembly is

simulated under known processes, the variance in b-diversity explained

by the environment is often a unimodal or other non-monotonic

function of the strength of environmental filtering. Variance

partitioning results cannot therefore be used to directly infer the

strength of underlying processes.

One potential solution to this issue is to interpret empirical

variance partitioning results with respect to a priori expectations

derived from community assembly simulation models. Interpreting

the results of variance partitioning in the context of appropriate

assembly models is roughly analogous to and as important as

interpreting traditional community assembly rules (e.g. Diamond’s

checkerboards) with respect to appropriate null models (e.g.,

[35,36,37]). However, the simulation-based approach is distinct

from a traditional null model in that there is no single ‘null’

expectation, but rather a suite of expectations generated under

different sets of processes. Sets of expectations are then ‘competed’

against each other based on their fit to empirical patterns. This is

conceptually similar to the ‘pattern oriented modeling’ approach

discussed in Grimm et al. [38], and goes beyond the binary test

provided by most null models (i.e., is community structure random

or not?) by allowing inferences regarding the relative and absolute

magnitudes of community assembly processes (see also [39,40,41]).

Here we have two broad goals. The first is to develop a practical

framework that can be used by empiricists that want to infer

processes of community assembly by simultaneously examining

empirical patterns of taxonomic, phylogenetic and/or functional

b-diversity. The inclusion of phylogenetic and functional data in

this framework requires the development of substantially more

sophisticated community assembly models than previously devel-

oped. As such, we provide guidance so that other researchers can

use our framework to first generate expected patterns of b-diversity

across relevant combinations of community assembly processes

and then compare empirical patterns to those expectations. Doing

so will allow inference of the relative and absolute strengths of

processes that govern empirical patterns of community structure.

Our second goal is to provide a framework that can be added to or

modified by theoreticians eager to explore additional assumptions

and processes relevant to community assembly.

In working towards these goals we (i) describe a set of taxonomic,

phylogenetic and functional b-diversity metrics; (ii) develop the

analytical and simulation models that comprise our framework; (iii)

use the framework to generate expectations under an empirically

realistic scenario; (iv) compare model-generated expectations for

taxonomic, phylogenetic and functional b-diversity to intuition-

based expectations commonly employed in the literature; and (v) test

the utility of the framework to provide inferences of underlying

processes by combining taxonomic, phylogenetic and functional

b-diversity.

Methods

b-Diversity Metrics
A wide range of metrics exist for quantifying b-diversity

[20,21,28,42]. Here we examine a subset that quantify the degree

of taxonomic, phylogenetic, or functional dissimilarity between

communities. For phylogenetic and functional data we investigate

(i) mean phylogenetic or functional pairwise distances (PW) (Eq. 1),

a between-community version of the net relatedness index of

Webb ([43], see also the taxonomic distinctness metric reviewed in

[44]); (ii) mean nearest neighbor distance (NN) (Eq. 2) in either

phylogenetic or functional trait space [45,46,47,48], a between-

community metric similar to the nearest taxon index of Webb

[43]; and (iii) a version of Sørensen’s metric (SOR) (Eq. 3) that

accounts for shared and unique branch lengths in a phylogeny or

functional trait dendrogram [22,49]. For taxonomic data we

examined the classical SOR metric and its abundance-weighted

version, Bray-Curtis (BC) (Eq. 4).

Equations (1) and (2) provide general forms of PW and NN

where both are based on differences among individuals across

communities. That is, both are weighted by the relative

abundances of species within communities and by the relative

community abundance (i.e. number of individuals of all species in

a community relative to the total number of individuals across all

communities).

PW~
XN

k

Pk

XN

l=k

XSk

ik

Dik
jl pik ð1Þ

NN~
XN

k

Pk

XN

l=k

XSk

ik

min(Dik
jl )pik ð2Þ

Relative abundance of species i in site k and the relative

community abundance of site k are given by pik and Pk,

respectively. There are Sk species in community k, N communities

being compared and Dik
jl is a vector of distances (functional or

phylogenetic) between a single species i in k and all species j in site

l, and Dik
jl is the mean of that vector.

The phylogenetic or functional trait SOR metric is defined as

SOR~
2Bkl

BkzBl

ð3Þ

, where Bkl is the shared branch lengths between sites k and l, and

Bk and Bl are the total branch lengths for site k and l, respectively.

Branch lengths are from either a phylogeny or a functional trait

dendrogram. It is important to note that functional PW and NN do

not require the use of a trait dendrogram, although a dendrogram

can be used if desired. In addition, SOR does not incorporate

species or community relative abundances.

The BC metric, which uses species relative abundances to

quantify taxonomic turnover between two communities, is given by

BC~

PStot

i~1

pik{pilj j

PStot

i~1

(pikzpil)

ð4Þ

, where Stot is the total number of species in the two communities. If

species’ relative abundances are converted into presence-absence

values (0 or 1), Eq. (4) collapses to one minus the taxonomic SOR

metric, which is directly analogous to SOR as presented in

Eq. (3) [22,49].

Generating Expectations: A General Overview
Patterns of b-diversity in a world in which all species were

extremely dispersal-limited would look quite different from
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patterns in a world in which all species could reliably colonize

distant locations. We can imagine a spectrum of possibilities

between those two extremes, and across this spectrum b-diversity

patterns (e.g. their shape or strength) will vary in some predictable

fashion. The details of those patterns will depend upon the

particular assumptions we make about how dispersal-limitation

affects community assembly. However, given some reasonable set

of assumptions and an empirical b-diversity pattern, we can begin

to zero in on where the empirical system lies along the dispersal

limitation spectrum. One can imagine a parallel situation for

identifying the position of an empirical system along a spectrum of

environmental filtering. Below we describe an approach for

generating sets of local communities and expected b-diversity

patterns based on the strengths of dispersal limitation and

environmental filtering.

Any model generating expected patterns should be constrained

with system-specific attributes so that expectations are relevant to

the empirical system of interest. As such, we develop our model so

that it can use empirical attributes as inputs. These empirical

attributes may include, but are not limited to, (i) the regional species

pool phylogeny; (ii) the degree of phylogenetic trait conservatism;

(iii) the spatial distribution of local communities; (iv) the degree to

which an environmental variable (e.g. temperature) is correlated to

a given spatial dimension (e.g. latitude); and (v) the number of

individuals or species in local communities (see also Table 1). To

generate expected patterns of taxonomic, functional and phyloge-

netic b-diversity our framework uses these inputs to combine an

analytical model with simulations in six general steps (Fig. 1):

1) Define the range of strengths of environmental filtering and

dispersal limitation to be examined. Each model run

generates expected b-diversity patterns for a unique

combination of process strengths.

2) Define local sites with respect to their geographic coordi-

nates and environmental conditions. The strength of the

environment-space correlation across these sites will affect

the ability of variance partitioning to uniquely ascribe

variance to space or the environment. As such, it is

important that the model be constrained to the environ-

ment-space correlation of the empirical system.

3) Evolve species environmental optima [traits] across the

regional species pool phylogeny. At the same time that traits

are evolving, species geographic ranges are allowed to move

through space. For simplicity the spatial position of a species

range is summarized by its center of abundance, referred to

here as the ‘range centroid.’ For any given species, trait

evolution and changes in the position of its range centroid

are not independent. The covariance between them is

determined by the strength of dispersal limitation, the

strength of environmental filtering, and the degree of

environmental spatial structure (see Fig. 2 and the following

section for details).

4) Assign species relative abundances throughout the regional

species pool. This is done by randomly drawing from a

defined species abundance distribution, which can be

constrained to match the empirical distribution.

5) Community assembly occurs through the probabilistic

assignment of individuals to local sites based on species’

relative abundances in the regional species pool, the spatial

proximity of a species range centroid to a given site, the

strength of dispersal limitation, the match between species’

Table 1. Major assumptions and tools used in the theoretical framework developed here.

Current Framework Assumptions and Tools
Constrain
Empirically? Alternative Formulation

Environment-Space correlation with R2 = 0.5 Yes Empirical correlation

Local sites randomly located in space Yes Spatial clustering of sites

All local sites have equal community abundance Yes Allow abundances to vary

Local species richness not constrained Yes Limit richness, not abundance

Randomly assign species global abundances Yes Closely related species with similar abundances

Species abundance distribution is lognormal Yes Uniform distribution

Regional species pool of 500 species Yes Empirical regional richness

Simulated phylogeny with no extinction Yes Empirical phylogeny

Traits evolve by Brownian motion Yes Trait conservatism

Dispersal limitation and environmental filtering are the most
important processes

No Include competition based on trait similarity

Community assembly processes operate on both ecological and
evolutionary time scales

No No influence of dispersal on evolutionary patterns

Range centroid and abundance centroid are positively correlated No Dispersal from range edge rather than range centroid

Trait-range centroid covariance model sums dispersal limitation and
environmental filtering effects

No Multiplicative model or removal of trait-range
centroid covariance

Evolved trait(s) determine species’ suitability to examined
environmental variables

No Evolve two traits, environment selects on one,
b-diversity measured with other

All species have the same niche breadth and dispersal breadth ? Niche and/or dispersal breadths vary across species

Environmental niches and dispersal kernals are Gaussian functions ? More flexible distributions such as the Weibull

Analysis of b-diversity with linear models using distance matrices No Nonlinear models, RDA, PCNM

The middle column notes whether or not an assumption can be constrained with empirical data when comparing framework predictions to empirical b-diversity
patterns. Examples of alternative assumptions or tools that could be explored in future theoretical studies that modify our framework are noted in the right-hand
column.
doi:10.1371/journal.pone.0020906.t001
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environmental optima and the environment of a site, and

the strength of environmental filtering. For example, if

dispersal-limitation is strong and environmental filtering is

weak, a species’ probability of inclusion depends primarily

on the proximity of its center of abundance (range centroid)

to the local site. An assumption here is that species can

disperse from any location within their range, but

abundance declines towards the range edge so that distance

of a site from the range centroid provides a reasonable

summary of the probability that a species is found in that

site. If community assembly is also governed by strong

environmental filtering, the probability of inclusion also

depends upon the difference between the species’ environ-

mental optima and the environmental conditions at the site.

6) Quantify b-diversity for all pairwise community compari-

sons using selected b-diversity metrics. In turn, variation in

each b-diversity metric is partitioned into components

explained by space only, environment only, spatially

structured environment, and residuals [50]. We take this

approach because the relative influences of dispersal

limitation and environmental filtering are often inferred in

empirical studies through variance partitioning of b-

diversity. As noted above, the assumption in these empirical

studies is that the variance explained by the environment,

for example, increases with the strength of environmental

filtering. Using variance partitioning on the model-generat-

ed expectations provides the opportunity to directly test this

assumption.

Modeling Species Traits and Geographical Ranges
through Evolutionary Time

Previous theoretical work has characterized how environmental

filtering and competition influence patterns of taxonomic, phyloge-

netic and functional diversity within local sites [51,52,53]. However,

within-site diversity does not consider spatial turnover in community

composition (i.e. b-diversity). To generate expected b-diversity

patterns it is necessary to build from previous work by explicitly

considering the spatial distribution of species and environmental

conditions at local sites while also addressing the influence of dispersal

limitation.

To generate expected taxonomic, phylogenetic and functional b-

diversity patterns our model evolves species environmental optima

[traits] on a regional phylogeny while tracking species spatial

movements. This approach allows local community assembly to be

modeled by applying ecological processes to species’ trait values and

Figure 1. Simulation procedure for a simplified scenario with one spatial dimension and one environmental variable. Note that
capitalized variables indicate vectors. After defining the strengths of niche breadth (n) and dispersal breadth (d) the regional species pool phylogeny
was generated (shown with 8 species for simplicity), species’ global relative abundances (F) were randomly assigned from a lognormal abundance
distribution, and species’ environmental optima (T) along the environmental axis were evolved while tracking species’ range centroids (R) along the
spatial dimension. Environmental conditions (E) and spatial positions (S) were then defined for twenty local sites. To assemble a community at site k
the environmental condition (Ek) and spatial position (Sk) of site k were compared to the environmental optima (Ti) and range centroid (Ri),
respectively, for each species i. From these environmental and spatial differences probabilities were found from Gaussian distributions (blue and red
curves), the variances of which were n and d, respectively. A probability of incidence for species i at site k (pik) was then found as the product of the
global relative abundance (Fi) and probabilities based on environmental (qik) and spatial (yik) distances for species i. To generate the vector of relative
abundances for site k the regional species pool was then sampled 10,000 times with replacement, where pik gave the probability of choosing species
i.
doi:10.1371/journal.pone.0020906.g001
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spatial locations, which emerged through evolutionary time. In

defining the relationship between species’ trait values and their

spatial locations we recognize that the processes influencing local

community assembly in ecological time must also influence the

correlation between species’ trait values and their spatial locations in

evolutionary time (Fig. 2). If dispersal limitation is strong, species

near each other will be closely related and will thus have similar trait

values. Regardless of dispersal limitation, if environmental filtering

is strong and the environment is spatially structured, species near

each other will have similar trait values even if they are not closely

related. On the other hand, if the environment is not spatially

structured, only dispersal limitation can lead to a correlation

between species’ trait values and their spatial positions. Therefore, a

key assumption of our model is that as species move across the

landscape through evolutionary time, the degree to which their trait

values correlate with their spatial locations is determined by three

factors: the strength of dispersal limitation, the strength of

environmental filtering and the degree of environmental spatial

structure.

Here, we analytically link dispersal limitation, environmental

filtering and the degree of environmental spatial structure to the

covariance between species’ traits and their spatial positions

[range centroids]. To make all variables comparable we assume

they are normalized as z-scores, which also constrains covariance

to range from zero to one. An additive model combining the

influences of dispersal limitation and environmental filtering over

the covariance between species traits (T) and their range centroids

(R) can be written as

CVTiRj
~(e{dzCVEiSj

e{ni )=(1zDS): ð5Þ

Here CVTiRj
is the species-level covariance between the value of

trait i and the range centroid position along spatial dimension j,

and CVEiSj
is the community-level covariance between environ-

mental variable i, which can select on trait i, and spatial dimension

j. The parameter ni describes the strength of environmental

filtering relative to environmental axis i, and is the variance of the

Gaussian function describing a species’ performance across

environmental conditions. As ni increases, species have broader

niches and thus environmental filtering is weaker with respect to

axis i. Similarly, parameter d defines the strength of dispersal

limitation and is the variance of the Gaussian dispersal kernel.

Dispersal limitation is assumed to be equal across all species and

Figure 2. Effects of assembly processes on the relationship between environmental optima and range centroids. The strengths of
environmental filtering, dispersal limitation, and environmental spatial structure constrain the evolutionary-time-scale relationship between species’
intrinsic environmental optima (functional trait value) and the spatial position where their abundance is maximized (the range centroid). Simulation
output when both processes are strong (n = d = 0.0001; panels A,C) or weak (n = d = 10; panels B,D). The environment has either weak (CVEi Sj

<0.3;
panels A,B) or strong (CVEiSj

<0.95; panels C,D) spatial structure. All axes are normalized as standard normal deviates, with mean zero and standard
deviation of one. Solid red lines represent the one to one line and solid blue lines are linear regressions. (A) When both processes are strong but there
is little environmental spatial structure, a moderately tight relationship emerges between species’ trait values and the positions of their range
centroids. (C) Increasing the degree of environmental spatial structure leads to a much tighter, one to one relationship. (B,D) Irrespective of how
spatially structured the environment is, when both processes are weak there is no relationship between species’ trait values and the positions of their
range centroid.
doi:10.1371/journal.pone.0020906.g002
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all spatial axes. While ni values need not be equal with respect to

different environmental axes, here we assume that n1 = n2. We also

make the simplifying assumption that a single value of ni usefully

characterizes the overall degree of environmental filtering across

all species in the system. A potential extension of our framework is

to relax this assumption by allowing ni to vary across species, but

the chief aim of this research is to characterize the overall or

average strength of the process across the species and sites

considered. In order to maintain the summed covariance across all

traits and dimensions between zero and one, the denominator in

Eq. (5) incorporates the number of spatial dimensions (DS). In turn,

if environment and space are normalized as z-scores,

0v

PDE

i

PDS

j

CVTiRj
ƒ1, where DE is the number of environmental

dimensions.

In Eq. (5) broader species’ niche functions (weaker environ-

mental filtering) and broader species’ dispersal kernels (decreased

dispersal limitation) lead to declines in the covariance between

trait values and range centroids (i.e. smaller values of CVTiRj
).

Likewise, narrower niches and dispersal kernels increase the match

between a species intrinsic optimal environment (its trait value)

and the environmental conditions at the range centroid, where it

has maximum abundance (cf. Fig. 2C,D). Note that in simulations

underlying Figures 2C and 2D the space-environment covariance

was high (<0.95) such that normalized environmental conditions

and spatial positions can effectively be used interchangeably (i.e. x-

axes in Figs. 2C,D indicate range centroid spatial position and the

environmental conditions where abundance is maximized).

The contribution of dispersal limitation to CVTiRj
is given by

e{d whereby extreme dispersal limitation results in species’ traits

being correlated with their spatial locations. In this case d?0 and

e{d?1, while at the other extreme where dispersal is unlimited

d?? and e{d?0. The term CVEiSj
e{ni describes the contribu-

tion of environmental filtering to CVTiRj
. Note that the model

assumes that trait i is only influenced by environmental dimension

i such that trait and environment dimensionality must be equal,

but need not be the same as the dimensionality of space. This is an

assumption that could be relaxed in future versions of the model.

When species’ niches are very narrow and therefore filtering is

very strong, the contribution of filtering to CVTiRj
should be equal

to CVEiSj
. That is, the overall contribution of niche breadth to the

trait-range centroid covariance is limited by the degree of spatial

structure in environmental variables. As niches become broader

and environmental filtering weakens, the contribution of filtering is

therefore modeled as a declining fraction of CVEiSj
, which is itself

an empirical input parameter.

While Eq. (5) can be extended to any number of dimensions, we

examine a two-dimensional case with two spatial and two

environmental axes. As such, species have two environmental

optima, one for each abiotic variable, and their range centroid is

located in two spatial dimensions. The full covariance matrix

defined by Eq. (5) for this two-dimensional case is provided in

Table 2, which is the input covariance matrix to the R function

‘sim.char’ (R package geiger). Although covariance values are

analytically defined, when species’ traits are evolved not all

realized covariance values will equal their idealized values.

Equation (5) is necessary because the influences of dispersal

limitation and environmental filtering over community assembly

should be consistent with how those processes structure species’

traits and geographic ranges over evolutionary time. If environ-

mental filtering is strong, species’ traits will be correlated through

evolutionary time with their spatial locations, but only to the

degree that the environment is spatially structured (Fig. 2).

Likewise, we began with the assumption that the contemporary

ability of species to move across the landscape has been

maintained through evolutionary time. As a result, Eq. (5)

explicitly links the processes influencing the evolutionary-time-

scale correlation between trait evolution and range position with

the ecological processes governing the assembly of local commu-

nities. While other formulations are possible for Eq. (5) (e.g.

differentially weighting the relative influence of dispersal limitation

and environmental filtering), we have chosen what we believe to

be the simplest form that captures the qualitative behavior

described above.

Generating Expectations: Simulation and Analysis Details
In order to demonstrate the use of our framework, provide an

example of the expectations it generates, and test its utility in an

idealized case, we ran the model with hypothetical, but empirically

realistic parameter values. The following procedure was followed

for each replicate simulation:

1) Define n (equal for all i) and d. Across simulations n and d

were varied to produce conditions ranging from extreme

dispersal limitation and environmental filtering to unlimited

dispersal and no filtering. All combinations of eleven

logarithmically spaced values of n and d were evaluated,

ranging from 0.0001 to 10.

2) Define spatial positions and environmental conditions of 20

local communities such that CVEiSj
<0.7 when i = j and

CVEiSj
<0 when i?j. This implies that the two environmen-

tal axes are independent in our two-dimensional scenario

and that each only correlates with one spatial dimension.

Setting CVEiSj
<0.7 reflects a space-environment R2 value

near 0.5, which is an empirically relevant degree of

environmental spatial structure: most environmental

Table 2. Idealized trait-space covariance (CVTiRj
) matrix for the evolution of species environmental optima (Trait) and range

centroids (Space).

Trait 1 Trait 2 Space 1 Space 2

Trait 1 1 0 (e{dzCVE1 S1
e{n)=3 e{d=3

Trait 2 0 1 e{d=3 (e{dzCVE2 S2
e{n)=3

Space 1 (e{dzCVE1 S1
e{n)=3 e{d=3 1 0

Space 2 e{d=3 (e{dzCVE2S2
e{n)=3 0 1

Species environmental optima and range centroid are both arrayed along two dimensions.
doi:10.1371/journal.pone.0020906.t002
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variables are spatially structured at geographic scales (i.e.,

CVEiSj
&0). At extreme levels of spatial autocorrelation

(CVEiSj
<1) variance partitioning will have little power to

distinguish the unique contributions of environment or

space.

3) Generate a regional phylogeny with 500 species using the

function ‘birthdeath.tree’ (R package geiger) with a birth rate

of 0.1 and a death rate of zero, and define the variance-

covariance matrix following the equations in Table 2. In

turn, via Brownian motion, species’ traits were evolved and

species’ range centroids were tracked along the phylogeny

using the variance-covariance matrix as the input to the

function ‘sim.char’ (R package geiger).

4) Assign species’ global relative abundances by randomly

drawing from a 500 species log-normal species abundance

distribution without replacement.

5) Assemble local communities in the context of the defined n

and d values. For this step one can either sample a fixed

number of individuals or sample until a fixed number of

species is reached, but both cannot be constrained

simultaneously. We assume that limiting resource supply is

similar among communities so that each community can

support the same number of individuals. In this case realized

species richness emerges from the combined influences of

assembly processes, the number of individuals in a local

community, and the size of the regional species pool. Each

local community was assembled by drawing 10,000

individuals with replacement from the regional species pool.

For each draw all 500 species were assigned a probability of

being included into the assembling community, defined as

the product of (i) a probability proportional to the species’

global relative abundance, (ii) a probability from the

Gaussian dispersal kernel based on the Euclidean spatial

distance between the community’s spatial position and a

species’ range centroid, and (iii) a probability from the

Gaussian niche function based on the Euclidean environ-

mental distance between the community’s environment and

a species’ environmental optimum (Fig. 1). All 20 commu-

nities were assembled independently.

6) Quantify b-diversity for all pairwise community comparisons

using Eqs. (1–4). Variance in b-diversity was then partitioned

into fractions explained only by spatial distances among

communities, only by environmental distances among

communities, by spatially structured environmental distances,

and a fraction that was unexplained [50]. In addition, the rate

of change in b-diversity with spatial and environmental

distances was estimated with a multiple regression simulta-

neously relating b-diversity to spatial and environmental

distances. Mean values for each of the four variance

compartments and both of the slope estimates were taken

across 100 replicates for each of the 121 combinations of n

and d values. These mean values were interpolated (using

‘interp’ in R package akima) to generate continuous contour

surfaces. The contour surfaces were subsequently used to

examine patterns of partitioned variance across the ‘process

space’ defined by environmental filtering and dispersal

limitation. Regression on distance matrices is used because

this is a common approach in empirical b-diversity studies,

including recent phylogenetic b-diversity analyses [24]. In

future extensions of our framework it would potentially be

useful to examine additional statistical tools (e.g. distance-

based redundancy analysis) but there is no obvious practical

advantage of one approach over all others [34,54].

Results and Discussion

Comparing Intuition-Based and Model-Generated
Expectations

It is commonly assumed that stronger dispersal limitation leads

to greater variance partitioned to space and to steeper slopes

(‘spatial slopes’) for the regression of b-diversity against the spatial

distance between communities. Likewise, it is often assumed that

variance partitioned to the environment should be greater and

‘environmental slopes’ should be steeper when environmental

filtering is stronger (e.g., [7,29]). These conceptual or ‘intuition-

based’ expectations are summarized in the top panels of Fig. 3.

Comparing the model-generated expectations to the intuition-

based expectations showed that no metric or type of b-diversity

duplicated these patterns (Figs. 3, S1, S2). In particular, the model

predicts that partitioned variances and slope estimates will

commonly change as a unimodal function of process strength,

and this held under much weaker (CVEiSj
<0.3) and much

stronger (CVEiSj
<0.95) environmental spatial structure (cf. Figs.

S1, S3, S4). For example, the variance in phylogenetic SOR

partitioned to the environment first increased and then decreased

going from very weak to very strong environmental filtering. One

exception was the variance in functional PW partitioned to the

environment, which very nearly increased monotonically with

increasing environmental filtering (Fig. S1). This is likely due to the

environment directly selecting on the traits with which functional

b-diversity was calculated.

There are two primary reasons why explained variances and

slope values increase and then decrease as a given process gets

stronger. First, as the strength of either dispersal limitation or

environmental filtering increases, species richness decreases (Fig.

S5). When there are few species within each local community, it is

unlikely that any two communities will share many species

regardless of spatial or environmental distance. Second, when

processes are extremely strong there will be complete turnover

even over relatively short spatial or environmental distances. In

turn, similarity values go to zero across the majority of observed

spatial and environmental distances. Fitting statistical functions to

these sorts of data results in a poor fit (thus low explained variance)

because most data have the same value and the only variation in

the data is over a small range of short distances. Shallow slopes are

also expected in this case because the majority of data fall on the

zero-similarity line so that there is no decay in similarity across

most of the range in spatial or environmental distances (Fig. S6). In

such extreme cases it would not be reasonable to infer that

processes are weak simply due to low explained variance. Most

empirical systems are not as extreme as the example provided in

Fig. S6B and are characterized by at least moderately low

partitioned variance (.10%) [29], in which case the appropriate

inference becomes ambiguous. Unimodal variance partitioning

patterns must therefore be taken into consideration when making

inferences for most empirical systems.

An important implication of unimodal patterns in explained

variance and slope estimates is that empirical observations of low

explained variance and shallow slopes do not necessarily indicate

weak dispersal limitation and environmental filtering. It may,

however, be possible to use relative magnitudes of partitioned

variances and slopes to infer the relative influences of dispersal

limitation and environmental filtering. The degree to which this is

useful can be examined by plotting the ratio of process strengths

(i.e. d/n) against the ratio of partitioned variances or the ratio of

fitted slopes for each simulated set of communities. The expected

relationship is provided in the upper right panel of Fig. 3: when

variance partitioned to space is larger than variance partitioned to
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Figure 3. Patterns of variance partitioning across combinations of assembly processes. (Left 2 columns) Interpolated variance partitioning
across eleven values each of niche breadth (increasing from left to right on each x-axis) and dispersal breadth (increasing from bottom to top on each
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the environment, one intuitively expects that dispersal limitation is

stronger than environmental filtering, and vice versa. The same is

true for slope estimates. As such, all data points are expected to fall

in the upper left and lower right quadrants of the right-hand

panels in Fig. 3. If a substantial number of simulations fall into the

lower left or upper right quadrants, using intuition alone would

lead to the wrong inference regarding the relative influences of

dispersal limitation and environmental filtering.

For all metrics and all three types of b-diversity a large fraction

of model-generated expectations fell into the upper left or lower

right quadrants (Figs. 3, S1, S2, right column). Across all 121

combinations of d and n the percentage of replicate simulations

that were consistent with the intuitive expectations based on

variance partitioning ratios were 86% for BC, 82% for taxonomic

SOR, 76% for phylogenetic PW, 82% for phylogenetic SOR, 75%

for functional PW, and 81% for functional SOR. Similar patterns

were found under different degrees of environmental spatial

structure and for the ratio of the spatial slope to the environmental

slope. As such, the variance partitioning ratio can be a useful

indicator of which process, dispersal limitation or environmental

filtering, is more influential in community assembly. Caution is

warranted, however, when total explained variation is low (,20%)

or when the environment has strong spatial structure (cf. Figs. S1,

S3, S4, right columns).

The departures between intuition-based and model-generated

expectations clearly show that interpreting b-diversity patterns

from intuition alone can provide incorrect inferences of underlying

processes. A similar conclusion was reached by Smith and

Lundholm [34] and Gilbert and Bennett [54] for taxonomic b-

diversity, and we show that the same conclusion holds for

phylogenetic and functional b-diversity. It is worth noting that,

with respect to taxonomic b-diversity, our results are very similar

to those of Smith and Lundholm [34] even though our simulation

model is entirely different. This suggests that the presence of non-

monotonic functions relating explained variance to the strength of

underlying processes is likely the rule rather than the exception.

Inferring community assembly processes therefore requires that

empirical patterns be compared to expectations generated by

process-based simulation frameworks such as the one derived here

(for a similar perspective see [38,39,40,41]).

Testing the Framework and Merging Taxonomic,
Phylogenetic and Functional b-Diversity

We have shown that interpreting patterns of taxonomic,

phylogenetic or functional b-diversity using intuition alone can lead

to misleading inferences regarding both the relative and absolute

strengths of dispersal limitation and environmental filtering. The key

question now is if empirical patterns are compared to model-

generated expectations, do the resulting inferences closely estimate

the true strengths of underlying processes? To answer this question

and test our framework we next define how strong dispersal limitation

and environmental filtering are, use our framework to generate b-

diversity patterns, and then determine whether or not those

b-diversity patterns can be used to go ‘backwards’ to unambiguously

and correctly infer the known process strengths that were used in the

simulation. It must be recognized that this is a necessary step, but only

a first step in testing our framework, and represents the best-case

scenario. If the framework does not pass this simple test, it must be

modified. We also use this test as an opportunity to provide an

example of how empiricists can couple our framework to specific

empirical systems.

To challenge the framework as much as possible we chose a

location in process space where there was a strong departure

between the intuition-based expectations and the model-generated

expectations. That location was the lower left corner of process

space corresponding to extreme dispersal limitation and environ-

mental filtering (d = n = 0.0001). We selected one set of local

communities simulated under these conditions to serve as example

‘empirical’ data. For taxonomic and phylogenetic b-diversity,

variation partitioned uniquely to either space or the environment

in this set of communities was less than 0.038 (Fig. 3). If these were

actual empirical results, the intuitive interpretation would be that

taxonomic and phylogenetic community structure are not

influenced by either dispersal limitation or environmental filtering.

The fractions of functional PW partitioned to space and to the

environment were 0.014 and 0.31, respectively, which would

naively lead one to infer that functional composition is primarily

governed by environmental filtering. Neither of these inferences

would be correct.

Rather than relying on intuition, the simulations provide a

framework for what combinations of process strengths would be

expected to yield the empirically observed variance partitioning

results. As a first step, we can select the regions of process space

where the model-generated variance partitioning values closely

match the ‘empirical’ values. If these regions are large, inferences

of process strengths will be ambiguous, indicating that different

process strengths lead to the same b-diversity patterns.

In the case of BC, variance partitioned to space was 0.012 which,

after including some error around this value, corresponds to the

swath of process space indicated by the grey and red regions in

Fig. 4A (cf. the blue region of the ‘space only’ Bray-Curtis plot in

Fig. 3). Variance partitioned to the environment was 0.005, which

corresponds to the black and red regions of Fig. 4A (cf. the blue

region of the ‘environment only’ Bray-Curtis plot in Fig. 3). Only

the combinations of dispersal limitation and environmental filtering

highlighted by the red regions of Fig. 4A would yield variance

partitioning results similar to what was observed empirically based

on the BC b-diversity measure.

Using BC alone results in two plausible regions of process space

that could have resulted in the observed patterns–either both

processes are very strong or both are very weak. Using the

framework with BC alone has therefore provided an ambiguous

answer regarding the strength of assembly processes. Using

variance partitioning based on phylogenetic SOR did not greatly

reduce this ambiguity: the upper right and lower left corners of

process space were consistent with the ‘empirical’ phylogenetic

y-axis) for three b-diversity metrics. The left column is variance partitioned only to the environment, the right column is variance partitioned only to
space. Larger niche breadth results in weaker environmental filtering, and a larger dispersal breadth results in weaker dispersal limitation. The
intuitive expectation is that variance partitioned to only the environment should decrease moving from the left to the right within each panel in the
left column, and variance partitioned only to space should decrease from the bottom to the top within each panel in the right column. Colors in all
panels are scaled the same and both axes are log10-scale. (Far right column) Across all replicate simulations, the ratio of dispersal breadth to niche
breadth is plotted against the ratio of variance partitioned to space only and variance partitioned to environment only. Both axes are log10-scale.
Solid black lines indicate ratios of one. Points are color-coded by the summed variance explained individually by space and environment. Each panel
includes data across the 100 replicate simulations for each combination of dispersal and niche breadths. Results using phylogenetic or functional NN
were qualitatively similar to those using phylogenetic or functional SOR and are not shown. See Fig. S1 for phylogenetic and functional PW and the
space-or-environment ‘shared’ component of partitioned variance.
doi:10.1371/journal.pone.0020906.g003
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SOR variance partitioning results (red regions, Fig. 4B). Variance

partitioning based on functional PW again highlights multiple

regions where the ‘empirical’ data were consistent with the

theoretical expectations. However, these regions of consistency

start from the lower left corner and sweep up through the central

region of process space (Fig. 4C). The only region that was

consistent with the variance partitioning results of all three types of

b-diversity was a small area in the lower left corner (Fig. 4C).

Therefore, while each type of b-diversity provided ambiguous

inferences when considered alone, combining patterns from all

three types of b-diversity resulted in an unambiguous inference

that closely estimated the known process strengths (d = n = 0.0001)

with a reasonably small degree of error.

This first-order test of our framework again shows that intuitive

interpretations of b-diversity patterns can frequently lead to incorrect

inferences. This is true even if taxonomic, phylogenetic and

functional b-diversity are examined together. Results from the test

also suggest that our framework is a useful tool for moving beyond

intuition-based interpretations, and that by using the framework in

conjunction with real empirical patterns of taxonomic, phylogenetic

and functional b-diversity one can rigorously infer the absolute

strengths of dispersal limitation and environmental filtering. One

component of the variance partitioning analyses that we did not

utilize is the space-or-environment ‘shared’ component. We have not

used the shared component because it cannot be uniquely ascribed to

either space or the environment, it has no clear intuition-based

expectations, and its model-generated expectations are heavily

influenced by the degree of environmental spatial structure (cf. Figs.

S1, S3, S4). Nonetheless, the shared component may be useful in

some cases and we encourage using it alongside the variance

components ascribed uniquely to space and to the environment. In

fact there seems to be little cost in using all three variance components

simultaneously: doing so resulted in estimated process strengths very

close to the known process strengths (d = n = 0.0001) across a broad

range of environmental spatial structure (Figs. S7, S8, and S9).

Extensions and Caveats
All tests of our framework indicate that it provides rigorous,

quantitative estimates for the strengths of dispersal limitation and

environmental filtering. Most directly, these estimates are variances of

a Gaussian dispersal kernel and a Gaussian niche function. A

powerful aspect of our framework is that when coupled to an

empirical system, these Gaussian curves have units set by that system,

and thus provide an opportunity to test the model’s predictions. The

dispersal function is a quantitative description of how the probability

of dispersal declines as distance from a reproducing individual

increases. The niche function is a quantitative description of how

survival probability declines as the environment increasingly deviates

from a species’ optimal environment. In systems where it is feasible,

the estimated functions could be compared to field estimated dispersal

kernels and experimental estimates of organismal performance across

environmental axes of interest. Testing the framework in this way

would increase understanding of the framework’s capabilities and

limitations, and in turn, provide refined guidance on how to best

apply the framework to empirical systems.

We have outlined a straightforward procedure for inferring

community assembly processes by combining analyses of taxonom-

ic, phylogenetic and functional b-diversity. We look forward to

empiricists using frameworks like that developed here, and an

ensuing discussion on how to improve upon these types of

theoretical tools. One limitation of any analysis relating community

structure to environmental variables is that interpretations are

limited to the influence of measured aspects of the environment.

This is true for analyses done in the context of our framework as

well. We recommend that empiricists carefully choose environmen-

tal variables and first examine their influence one by one within a

theoretical framework. If multiple variables are found to be

important, they can be combined in a framework like that

developed here to look for interactive effects. Regardless of the

outcome, important information will be gained regarding the

influence of specific environmental variables. We further emphasize

Figure 4. Example of using ‘empirical’ (see text) analyses of b-diversity to infer community assembly processes. For each b-diversity
metric, empirical variance partitioning results are first compared to model-based expectations. The regions of process space where model
expectations closely match empirical results for variance partitioned to space (grey) or the environment (black) are shown. Regions where model
expectations are consistent with both the space and environmental variance partitioning results are highlighted in red. (A) Results for BC; (B) Results
for phylogenetic SOR, where yellow delineates regions of overlap in panel A. (C) Results for functional PW, where yellow delineates the intersection of
red and yellow regions in panel B. True values of niche (n) and dispersal breadths (d) must reside where yellow and red intersect in panel C. The actual
parameter values in this test case were n = d = 0.0001, consistent with the inference provided by combining taxonomic, phylogenetic and functional
b-diversity.
doi:10.1371/journal.pone.0020906.g004
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that our framework provides interpretations for processes that

influence whole community structure. If some environmental

variable influences a small subset of species, this should be reflected

in our framework as a relatively weak influence of environmental

filtering with respect to that environmental variable. One should

also note that in cases where only taxonomic data are available, a

framework like that developed here is still essential. In the example

we used to test our framework, an empiricist with only taxonomic

data would realize that their data are consistent with two very

different regions of process space and would refrain from making an

intuitive but unjustified conclusion. On the other hand, in less

extreme situations taxonomic data may be all that is necessary to

correctly infer process strengths. An empiricist cannot know this,

however, without comparing empirical patterns to theoretical

expectations like those generated here.

It is important to recognize that the framework developed here is

only one of many possibilities (e.g., [34]), and that a small portion of

the realistic combinations of potential processes, scenarios and

parameters has been explored. As more studies combine taxonomic,

phylogenetic and functional b-diversity, alternative and updated

frameworks should be developed. For example, one could include a

competitive process during community assembly (e.g., as in [53]).

We encourage these developments and recommend that explicit

comparisons be made among frameworks so that we have a clear

understanding of the tradeoffs inherent in using one approach over

another. To facilitate further developments we summarize, in

Table 1, major assumptions of our framework that can be modified

in future theoretical efforts and in studies that link frameworks like

that developed here to specific empirical systems. This sort of

systematic approach will help minimize the disagreements and

misunderstandings that were common as null models were

developed for community assembly rules (e.g., [37,55,56,57,58,59]).

Regardless of the specific approach taken in future studies, any

extension must retain five fundamental components: (1) the ability

to empirically constrain parameter values; (2) coordinated

evolution of species traits and spatial locations; (3) inclusion of

explicit effects of spatially structured environments; (4) local

community assembly governed by the combined influences of

clearly defined processes; and (5) an overall structure that allows

empirical patterns to be directly related to the theoretical

expectations. We are confident that placing empirical b-diversity

patterns in the context of model-generated expectations will lead

to a much deeper understanding of community assembly processes

and how they vary through space, time and across taxa.

Supporting Information

Figure S1 Patterns of variance partitioning across
combinations of assembly processes. (Left 3 columns)

Interpolated variance partitioning across eleven values each of

niche breadth (increasing from left to right on each x-axis) and

dispersal breadth (increasing from bottom to top on each y-axis)

for five b-diversity metrics, including those presented in Figure 3.

The left column is variance partitioned only to the environment,

middle column is variance partitioned to space or the environ-

ment, and the right column is variance partitioned only to space.

Larger niche breadth results in weaker environmental filtering,

and larger dispersal breadth results in weaker dispersal limitation.

See Figure 3 for intuitive expectations of the ‘space only’ and

‘environment only’ components of partitioned variance, and note

that there is no obvious intuitive expectation for patterns of the

space-or-environment component. The variance partitioned to the

space-or-environment component is intermediate relative to the

more extreme levels of environmental spatial structure (see Figs.

S3, S4), as expected with the intermediate degree of environmental

spatial structure used here (space-environment covariance<0.7).

Colors in all panels are scaled the same and both axes are log10-

scale. (Far right column) Across all replicate simulations, the ratio of

dispersal breadth to niche breadth is plotted against the ratio of

variance partitioned to space only and variance partitioned to

environment only. Both axes are log10-scale. Solid black lines

indicate ratios of one. Points are color-coded by the summed

variance explained individually by space and environment. Each

panel includes data across the 100 replicate simulations for each

combination of dispersal and niche breadths.

(TIF)

Figure S2 Patterns of multiple regression slope param-
eters across combinations of assembly processes. (Left 2

columns) Interpolated multiple regression slope parameters, where

vertical and horizontal axes are as in Figure S1. Note that color

bars are scaled differently in each panel. More negative slopes

indicate higher turnover in community structure at greater

environmental (left column) or spatial (right column) distances. (Far

right column) The ratio of dispersal breadth to niche breadth plotted

against the ratio of the spatial slope to the environmental slope.

Both axes are log10-scale. Points are color-coded by quantile scores

across the distribution of summed spatial and environmental

slopes. Note that steeper slopes (indicated by larger quantile scores)

generally fall into the upper left and lower right quadrants, thereby

correctly identifying the more influential process. See the main text

and Figure S1 for additional details.

(TIF)

Figure S3 Patterns of variance partitioning across
combinations of assembly processes. As in Figure S1, but

under stronger environmental spatial structure (space-environment

covariance<0.95, as compared to 0.7). Note that nearly all explained

variance is within the space-or-environment component, as expected

when space and environment are confounded with each other.

(TIF)

Figure S4 Patterns of variance partitioning across
combinations of assembly processes. As in Figure S1, but

under weaker environmental spatial structure (space-environment

covariance<0.3, as compared to 0.7). Note that nearly all

explained variance is within the two unique components, as

expected when space and environment are largely independent of

each other.

(TIF)

Figure S5 Species richness patterns across combina-
tions of assembly processes. Interpolated mean local

community species richness across all communities and all replicates

for 11 values each of niche breadth and dispersal breadth.

(TIF)

Figure S6 Example simulation outputs relating similar-
ity in taxonomic composition among local sites to the
spatial distances among local sites. In both panels

environmental filtering was set to be very weak (variance of niche

function = 10). Dispersal limitation was set to be (A) of moderate

strength (variance of dispersal kernal = 1021.5), or (B) very strong

(variance of dispersal kernal = 1024). Note that in (A) similarity

declines continuously with spatial distance whereas in (B) similarity

declines to zero over very short spatial distances. The distribution of

data in (A) results in higher explained variance and a steeper distance

decay slope, as compare to (B).

(TIF)

Figure S7 Example of using ‘empirical’ (see text)
analyses of b-diversity to infer community assembly
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processes. For each b-diversity metric empirical variance

partitioning results are first compared to model-based expectations

using all three variance partitioning components (‘space only’,

‘environment only’, and ‘space or environment’). The regions of

process space where model expectations closely match empirical

results for variance partitioned to all three components are shown in

red. Environmental spatial structure was intermediate and as in

Figure 4 (space-environment covariance<0.7). (A) Results for BC;

(B) Results for phylogenetic SOR, where blue delineates regions of

overlap in panel A. (C) Results for functional PW, where blue

delineates the intersection of red and blue regions in panel B. True

values of niche (n) and dispersal breadths (d) must reside where blue

and red intersect in panel C. The actual parameter values in this test

case were n = d = 0.0001, consistent with the inference provided by

combining taxonomic, phylogenetic and functional b-diversity.

(TIF)

Figure S8 Example of using ‘empirical’ (see text)
analyses of b-diversity to infer community assembly
processes. As in Figure S7, but in the case where the

environment is strongly spatially structured (space-environment

covariance<0.95).

(TIF)

Figure S9 Example of using ‘empirical’ (see text)
analyses of b-diversity to infer community assembly
processes. As in Figure S7, but in the case where the

environment is weakly spatially structured (space-environment

covariance<0.3).

(TIF)
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