
Volume 120, 2018, pp. 414–426
DOI: 10.1650/CONDOR-17-206.1

REVIEW

Opportunities and challenges for big data ornithology

Frank A. La Sorte,1* Christopher A. Lepczyk,2 Jessica L. Burnett,3 Allen H. Hurlbert,4,5 Morgan W. Tingley,6

and Benjamin Zuckerberg7

1 Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
2 School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
3 Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska Lincoln, Lincoln,

Nebraska, USA
4 Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
5 Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, North Carolina, USA
6 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
7 Department of Forest and Wildlife Ecology, University of Wisconsin–Madison, Madison, Wisconsin, USA
* Corresponding author: fal42@cornell.edu

Submitted October 10, 2017; Accepted February 22, 2018; Published May 2, 2018

ABSTRACT
Recent advancements in information technology and data acquisition have created both new research opportunities
and new challenges for using big data in ornithology. We provide an overview of the past, present, and future of big
data in ornithology, and explore the rewards and risks associated with their application. Structured data resources (e.g.,
North American Breeding Bird Survey) continue to play an important role in advancing our understanding of bird
population ecology, and the recent advent of semistructured (e.g., eBird) and unstructured (e.g., weather surveillance
radar) big data resources has promoted the development of new empirical perspectives that are generating novel
insights. For example, big data have been used to study and model bird diversity and distributions across space and
time, explore the patterns and determinants of broad-scale migration strategies, and examine the dynamics and
mechanisms associated with geographic and phenological responses to global change. The application of big data
also holds a number of challenges wherein high data volume and dimensionality can result in noise accumulation,
spurious correlations, and incidental endogeneity. In total, big data resources continue to add empirical breadth and
detail to ornithology, often at very broad spatial extents, but how the challenges underlying this approach can best be
mitigated to maximize inferential quality and rigor needs to be carefully considered.
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Oportunidades y desafı́os para la ornitologı́a de los datos masivos

RESUMEN
Los avances recientes en la tecnologı́a de la información y la adquisición de datos han creado tanto nuevas
oportunidades de investigación como desafı́os para el uso de datos masivos (big data) en ornitologı́a. Brindamos una
visión general del pasado, presente y futuro de los datos masivos en ornitologı́a y exploramos las recompensas y
desafı́os asociados a su aplicación. Los recursos de datos estructurados (e.g., Muestreo de Aves Reproductivas de
América del Norte) siguen jugando un rol importante en el avance de nuestro entendimiento de la ecologı́a de
poblaciones de las aves, y el advenimiento reciente de datos masivos semi-estructurados (e.g., eBird) y
desestructurados (e.g., radar de vigilancia climática) han promovido el desarrollo de nuevas perspectivas empı́ricas
que están generando miradas novedosas. Por ejemplo, los datos masivos han sido usados para estudiar y modelar la
diversidad y distribución de las aves a través del tiempo y del espacio, explorar los patrones y los determinantes de las
estrategias de migración a gran escala, y examinar las dinámicas y los mecanismos asociados con las respuestas
geográficas y fenológicas al cambio global. La aplicación de datos masivos también contiene una serie de desafı́os
donde el gran volumen de datos y la dimensionalidad pueden generar una acumulación de ruido, correlaciones
espurias y endogeneidad incidental. En total, los recursos de datos masivos continúan agregando amplitud y detalle
empı́rico a la ornitologı́a, usualmente a escalas espaciales muy amplias, pero necesita considerarse cuidadosamente
cómo los desafı́os que subyacen este enfoque pueden ser mitigados del mejor modo para maximizar su calidad
inferencial y rigor.

Palabras clave: ciencia ciudadana, datos masivos, desestructurado, eBird, ornitologı́a, semi-estructurado,
vigilancia climática
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Background
Throughout the history of ornithology, dedicated natural

historians and professional ornithologists have made use of

an ever-expanding set of tools to derive insights into and

increase the breadth of our understanding of avian biology.

The shotgun gave way to binoculars, then mist nets, leg

bands, and geolocators. Likewise, stable isotopes have

provided new insights into diets and distributions, and

DNA sequencing has improved our understanding of

population structure and evolutionary history. Added to

these technological and inferential advances, ‘‘big data’’ are

poised to vastly improve our understanding of the

distributions and ecology of birds.

Defining big data. The term ‘‘big data’’ is used to

describe the large digital datasets that have emerged as a

result of recent advancements in information technology

and data acquisition (Tien 2013). Big data resources are

often differentiated from traditional data sources based on

3 features: (1) data are numerous; (2) data are generated,

captured, and processed rapidly; and (3) data cannot be

readily organized into a traditional relational database

(Hashem et al. 2015). The concept of big data, however,

has advanced beyond identifying large and complex

datasets to describing the broader cultural, technological,

and scholarly implications of the growth of these unique

resources (Boyd and Crawford 2012). The big data

phenomenon has permeated many social, political, and

commercial domains, as well as many scientific and
medical disciplines (Boyd and Crawford 2012), and this

progression has resulted in paradigm shifts that are

revolutionizing many aspects of human life (Mayer-

Schönberger and Cukier 2013).

A common conceptual framework for describing the

characteristics of individual big data resources is the 3 V’s:

volume, velocity, and variety (Laney 2001). Volume refers

to the amount of data collected. Velocity refers to the rate

at which data are collected. Variety refers to the structural

heterogeneity in a dataset, which is typically classified as

structured, semistructured, or unstructured (Gandomi and

Haider 2015). Structured data, which constitute a very

small proportion by volume of existing big data, are data

that can be conveniently stored in traditional spreadsheets

or relational databases. Unstructured data, currently the

dominant format representing ~80% of existing data,

refers to information that lacks the structural organization

that is required for efficient storage and analysis. Semi-

structured data fall along the continuum between these 2

extremes and are generally defined by more flexible

structural elements. Beyond volume, velocity, and variety,

2 additional concepts are useful when considering the

application of big data resources: veracity and value

(Gandomi and Haider 2015). Veracity refers to data

precision and uncertainty, and value refers to the

information to volume ratio contained in the data.

Successfully recognizing and managing these characteris-

tics and challenges is necessary before big data can be

leveraged to generate knowledge.

Big data in the natural sciences. Big data are often

classified into 2 categories, data originating from the

physical or natural world obtained through observations or

sensors, and data obtained from social or economic

activities (Jin et al. 2015). Examples of unstructured big

data from the physical or natural world include satellite

imagery, seismic imagery, astronomical imagery, atmo-

spheric data, and data from high energy physics. Across

the natural sciences, including ornithology, big data have

challenged current epistemologies through the creation of

data-driven methods, such as machine learning, that rely

more on exploring large datasets and less on theory or

hypothesis testing (Kitchin 2014). The acquisition of data

from the natural world has been a characteristic of human

history for hundreds of years. With recent technological

advancements, the advent of big data can be seen as a

logical continuation of this process (Bowker 2000, Strasser

2012). With the advent of big data, the speed and scope of

data acquisition in the natural sciences has accelerated

rapidly, creating new opportunities and challenges (Hamp-

ton et al. 2013, Peters et al. 2014, Schimel and Keller 2015,
Devictor and Bensaude-Vincent 2016, LaDeau et al. 2017).

To extract scientific knowledge about the natural world

from big data in a robust and efficient fashion requires new

analytical approaches and perspectives. The fields of
bioinformatics and ecoinformatics emerged in part to

address how to extract and apply these types of data to the

natural sciences (Sarkar 2009, Michener and Jones 2012).

Within these approaches, data can originate from remote-

sensing platforms (Jensen 2006) or sensor networks that

are embedded in the environment (Porter et al. 2009,

Benson et al. 2010). The latter include inanimate sensor

networks, such as the U.S. National Ecological Observatory

Network (NEON; Keller et al. 2008), and human sensor

networks, in which data are collected by the general public

(Bonney et al. 2009, Dickinson et al. 2010). Data compiled

through these methods are unique in the natural sciences

in that they differ from traditional sampling designs which

address specific questions or hypotheses and emphasize

adherence to statistical assumptions (e.g., randomness,

independence, stationarity, and normality). In addition,

conventional statistical methods generate inferences by

considering the properties of small samples taken from a

population. Big data have the potential to sample the

majority of the population, reducing the need for tests of

statistical significance.

The lack of a specific context and the massive sample

size of big data create unique opportunities for scientific

discovery, but pose significant challenges wherein high

data volume and dimensionality can create noise accumu-

lation, spurious correlations, and incidental endogeneity
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(Fan et al. 2014, Gandomi and Haider 2015). The challenge

of analyzing big data has largely been addressed through

the development of big data analytics (Kambatla et al.

2014, Gandomi and Haider 2015) and cloud computing

(Assunção et al. 2015, Hashem et al. 2015). These

techniques and resources have allowed researchers to

automatically and efficiently mine data using machine

learning algorithms, which detect patterns, build predictive

models, and optimize outcomes (Hastie et al. 2009, Han et

al. 2011, Witten et al. 2016). The development of these

methods and resources has promoted the rapid advance-

ment of a new epistemological perspective in science in

which knowledge is extracted directly from data (Kitchin

2014).

The emergence of big data in the natural sciences has

opened novel lines of research, presented new challenges,

and changed how we observe and study the natural world.

Within ornithology, big data have begun to transform our

knowledge about birds, from their annual distributions to

how they relate to different environmental factors. To

address this transformation, we provide an overview of the

historical precursors to big data in ornithology and the

past, present, and future of big data in ornithology. Our

aim is to explore the rewards and risks associated with the
application of big data and how this can best be used to

advance the science of ornithology.

Origins of Big Data in Ornithology
Ornithological big data did not appear overnight, but

rather developed as both a data source and a means of

inference over the past century. Big data precursors started

with narrow purposes and goals, but became sources of

broader inference through the expansion and repurposing

of datasets to address emerging environmental challenges.

Other big data sources were conceived as ‘‘big’’ from their

outset, such as the citizen science project eBird (Sullivan et

al. 2014). A third source of big data is data streams that

exist outside ornithology—data that are collected and

archived for other purposes but now provide unique

research opportunities for ornithologists. This categoriza-

tion based on purpose (ornithology-focused, -related, or

-independent) is strongly correlated with a categorization

based on data structure (structured, semistructured, and

unstructured), as purpose-driven data collection generally

results in systematically structured data. As the structure-

based categorization has been broadly used in the big data

literature (Gandomi and Haider 2015), we use it here to

demarcate the current sources of big data in ornithology.

Structured data. Structured data are typically charac-

terized by low volume, velocity, and variety. In ornithology,

structured data have limits to what kinds of data are

collected and how the data should be collected. Any data

collection process that has or could have a ‘‘protocol,’’ for

example, is likely to result in structured data. As such,

structured data are often collected within the context of a

predefined question and tend to be highly organized based

on space, time, taxa, and measurements, and changes to

these limits and parameters are often carefully controlled

by researchers. Because of these controls, most field

research in ornithology produces structured data, with

carefully conceived collection schemes that result in

datasets of manageable size and complexity.

In ornithology, there is a variety of examples of

structured datasets with large volumes and low variety

and velocity, including the long-running national and

regional bird population monitoring programs such as the

North American Breeding Bird Survey (BBS), the British

and French Breeding Bird Survey, and Audubon’s Christ-

mas Bird Count (CBC). These datasets can be identified as

precursors to the more recent advent of semistructured

and unstructured data in ornithology through their ability

to provide a large volume of data annually over multiple

decades. Ornithologists are increasingly using these

resources within a broader and more innovative concep-

tual and analytical framework.

A prime example is the BBS, which has used a

structured data collection scheme to acquire data on

breeding bird populations across much of North America

since 1966. Since its inception, the number of survey

routes (39-km roadside surveys) in the BBS program has

grown from ~500 to .4,000, and the BBS now estimates

abundance trends for more than 420 species (Link et al.
2017, Sauer et al. 2017). Currently, the BBS dataset

contains more than 6.2 million independent observations

of .730 bird species from across North America.

Although the program tests alternative protocols for

improving detectability and count estimation (Nichols et

al. 2000), the sampling protocol for the primary point

count data has remained relatively unchanged since

inception. Raw data are compiled and hosted by the

United States Geological Survey and are publicly available.

Analytical methods for estimating population trends have

evolved concurrently with advancements in technology

and computational power, advances in ecological statistics,

and with the increase in the length of the time series data

(Sauer et al. 2017).

The BBS was initially created to monitor populations of

songbirds and other nongame species (Robbins et al. 1986,

1989). The use of BBS data has now expanded far beyond

the examination of population trends to include investi-

gation of broad-scale conservation issues such as habitat

loss and degradation and climate change (Flather and

Sauer 1996, Lepczyk et al. 2008, Hudson et al. 2017) as well

as the testing of biogeographical and ecological questions

(Rowhani et al. 2008). Over time, the BBS has provided

ecological inference far beyond its original goals, using

analytical approaches for which the dataset was not

designed. For example, the BBS has been used to explore
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questions related to species–energy theory (Dobson et al.

2015, Fristoe 2015), neutral theory (Kalyuzhny et al. 2014),

the distinction between core and transient species in

ecological communities (Coyle et al. 2013), and the spatial

scaling of biotic interactions (Belmaker et al. 2015). It has

additionally been used to build spatiotemporal niche

models (Bateman et al. 2016a), to help make isotopic

signature assignments (Hobson et al. 2014), and to study

continental-scale population responses to urbanization

(Pidgeon et al. 2014) and climate change (Stephens et al.

2016). The ever-growing volume of BBS data has provided

opportunities for scientists to address hypotheses beyond

the original scope of the monitoring program. In the case

of the BBS, the advantages of structured data appeals to

many ornithologists by offering strict standards and

consistent methodologies, by utilizing stratified site

locations to support representative sampling (Veech et al.

2017), and by providing the opportunity to track observer

experience (Sauer et al. 1994). However, many of these

same advantages that enhance data value and veracity can
limit the form and breadth of scientific inquiry.

Semistructured data. Semistructured data are charac-

terized by high volume, velocity, and variety, and lack the

strict standards or methodologies of structured data.
However, unlike unstructured data, semistructured data

are organized in a fashion that more readily promotes

analysis. The few examples of semistructured data are

often considered to be a form of structured data. In

ornithology, semistructured databases have arisen from

efforts to increase the flexibility of traditional structured

datasets in terms of sampling protocols and objectives. The

data generated from these efforts tend to have lower

veracity and do not conform to the more traditional

sampling designs associated with structured data. The rise

of semistructured data has coincided with the emergence

of citizen science research agendas in ornithology (Dick-

inson et al. 2010, Cooper et al. 2014) that have led to a

greater diversity of programs that are less prescriptive in

their protocols, methodologies, and sampling designs.

Citizen science programs also increase public awareness

of scientific research, and some can contribute to social

well-being (Bonney et al. 2016).

The primary example of semistructured big data in

ornithology is the eBird citizen science database (Sullivan

et al. 2014). eBird is a global bird monitoring project that

allows volunteers to enter their observations of bird

occurrence and abundance from any location at any time.

Using several basic sampling protocols, observations are

organized into a checklist format, which can then be

entered into a central online data depository. Like other

semistructured datasets, there are fewer requirements

regarding sampling design, so eBird checklists include

information on observer effort as defined by features of

each sampling protocol. Importantly, eBird is semistruc-

tured in that while observers are required to use a checklist

format within their chosen sampling protocol, they are free

to collect data at any spatial and temporal resolution. Thus,

observations compiled by eBird can range in quality and

extent from very general to very detailed. By welcoming all

types of data on bird occurrence and abundance, with only

loose boundaries used to define quality and collection

method, eBird has created a semistructured dataset with

unprecedented volume and velocity. By mid-2017, since its

inception in 2002, eBird had compiled over 30 million

checklists containing more than 423 million observations.

eBird data have been used to reveal patterns and

determinants of broad-scale migration strategies (La Sorte

et al. 2016a), and to advance our understanding of how

migratory birds are associated across the annual cycle with

protected areas and different land-cover categories (La

Sorte et al. 2015a, Zuckerberg et al. 2016), nighttime light

pollution (La Sorte et al. 2017b), and projected changes in

climate and land use (La Sorte et al. 2017a).

Unstructured data. Unstructured data are character-

ized by extremely high volume, velocity, and variety.

Unstructured data lack any intentional structure or

organization and are often characterized by passive sensors

that continuously collect text, images, audio, or video from
the environment. In most cases, these efforts have no

specific objective beyond data acquisition. In other cases, a

nonornithological objective is present, but the data can be

repurposed for ornithological research. More recently,

ornithological questions have been used to define an

underlying purpose for unstructured data acquisition.

A fundamental example of unstructured data that has

been repurposed for ornithological research is data from

weather surveillance radar (WSR). Since the 1940s, it has

been known that radar can detect birds in flight (Lack and

Varley 1945), and subsequently that it can be used to study

multiple aspects of bird migration within the atmosphere

(Eastwood 1967, Bruderer 1997a, 1997b). The advent of

large networks of WSR stations in North America and

Europe has allowed researchers to document migration

patterns and associations within the atmosphere across

broad geographic extents (Gauthreaux and Belser 1998).

Current WSR systems are designed to monitor and track

meteorological events, primarily precipitation. Extracting

biological signals from WSR is challenging due to the

volume of data generated by WSR and the overall

complexity of the radar information where precipitation

is detected in combination with other atmospheric

contaminants such as insects, birds, bats, and dust.

Nevertheless, several approaches have been developed

using machine learning and other big data analytics to

efficiently extract altitudinal profiles of bird density, speed,

and direction from WSR images (Dokter et al. 2011,

Farnsworth et al. 2016). This information has been used to

assess how environmental factors such as wind speed and
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direction dictate migration timing (La Sorte et al. 2015b,

Horton et al. 2016), and how nighttime light pollution

affects local (Van Doren et al. 2017) and regional migratory

behavior (McLaren et al. 2018). When WSR data are

combined with modeled estimates of species’ distributions

using eBird observations, more refined ecological assess-

ments can be made based on estimates of community

composition at WSR stations across time (La Sorte et al.

2015b, 2015c).

A source of unstructured data that has been specifically

designed to acquire ornithological information is nonin-

vasive acoustic monitoring (Blumstein et al. 2011). Birds

are a highly vocal taxa, and the collection of acoustic

behaviors using microphone arrays has been used to

monitor bird populations and their behavior during

stationary periods (Acevedo and Villanueva-Rivera 2006,

Dawson and Efford 2009, Vallejo and Taylor 2009) and

during migration (Farnsworth 2005). The resulting acous-

tic information has been used to estimate species richness

(Depraetere et al. 2012, Wimmer et al. 2013) and monitor

changes in species density (Dawson and Efford 2009) and

community composition over time (Lellouch et al. 2014).

During migration, many bird species, especially nocturnal

migrants, emit short vocalizations during flight. These

flight calls can be used to identify species and provide

information on species composition and behavior during

migration (Watson et al. 2016). Likewise, autonomous

recording units have been used to detect the presence and

spatial distribution of a variety of seabird species (Buxton

and Jones 2012, Cragg et al. 2015, Harvey et al. 2016). In

contrast to manual techniques for species identification,

the development of automated machine learning method-

ologies (Bardeli et al. 2010, Digby et al. 2013, de Oliveira et

al. 2015, Stowell et al. 2016, Zhao et al. 2017) has the

potential to rapidly advance the use of unstructured
acoustic monitoring in ornithological research (Gorrepati

et al. 2012).

Past and Present Contributions to Ornithology
The flexible nature of semistructured and unstructured

data has allowed ornithologists to address novel questions

and test long-standing hypotheses using unique biological

perspectives and observational scales. Unlike annual

monitoring programs that are confined to particular time

periods, such as the breeding season, semistructured or

unstructured programs allow continuous and flexible data

coverage and the ability to collect a greater diversity of data

on bird populations. Here, we describe how these data

have been instrumental in documenting novel patterns and

associations and their role in advancing our knowledge of

avian distributions at unique spatial and temporal scales.

Key benefits include the ability to address questions at the

level of entire populations across the full annual cycle and

the full geographic extent of a species’ annual distribution.

These efforts are also readily scalable, allowing researchers

to address questions across multiple taxa or for entire

species assemblages.

Diversity patterns. Understanding patterns of biodi-

versity at geographic scales is one of several research areas

that could only be addressed well with the advent of large

datasets. Data from the BBS and CBC have shed light on

continental-scale patterns of diversity during the breeding

and nonbreeding seasons (Hurlbert and Haskell 2003) and

have revealed important differences from what would be

expected simply by overlaying range maps (Hurlbert and

White 2005). These datasets have facilitated the testing of

species–energy theory as a driver of richness patterns

(Hurlbert 2004, Dobson et al. 2015) and the relative roles

of local and regional processes (White and Hurlbert 2010,

Coyle et al. 2013) and interannual variation in climate

(Rowhani et al. 2008) as drivers of those patterns. To date,

the majority of diversity research has been accomplished

using structured datasets, but some of the newer semi-

structured and unstructured data sources will undoubtedly

allow more refined examinations of diversity patterns at

larger extents and finer grains across the full annual cycle.

Species distribution modeling. The occurrence and

abundance information contained in eBird and other

semistructured programs does not lend itself to traditional

forms of parametric or nonparametric analysis to estimate

where birds occur across the annual cycle. The dynamic

nature of bird distributions requires approaches that can
accommodate the presence of spatiotemporal variation

within and across scales. For birds, these dynamics are

dependent on the phase of the annual cycle, with

stationary periods (breeding and nonbreeding) providing

greater structure, and more dynamic periods (migration)

creating greater heterogeneity. Therefore, a data-driven

approach is needed that can estimate distributions without

having to model the underlying dynamic processes, which

is often required when using traditional analytical

approaches. This can be achieved, for example, by using

an ensemble or mixture model approach, which imple-

ments a large number of static species distribution models

each applied to a spatiotemporally restricted extent whose

form adapts to spatiotemporal variation in data density

(Fink et al. 2010, 2014). Predictions can then be generated

by averaging across local models with shared extents,

allowing local patterns to scale up to estimate patterns at

regional scales (Fink et al. 2010, 2014). An alternative to

modeling species distributions using semistructured data

alone is to combine structured and semistructured data,

with the goal of balancing the tradeoffs between data

quality and quantity to improve model breadth and

performance (Fithian et al. 2015, Giraud et al. 2016,

Fournier et al. 2017, Pacifici et al. 2017). These data fusion

approaches are particularly valuable when estimating the

distributions of very rare species or species that are
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difficult to detect, for which the quantity and quality of

structured data are often severely lacking (Fournier et al.

2017).

Broad-scale migration strategies. The advent of big

data has created unique opportunities to study bird

migration from a macroecological perspective. Here,

broad-scale patterns and associations can be documented,

and questions and hypotheses can be addressed or tested

in a taxonomically and geographically comprehensive

fashion. For example, using observations from the eBird

database, broad-scale migration strategies can be docu-

mented for multiple taxa at the population level across the

full annual cycle. Such work has provided evidence that

many migratory bird populations employ looped migration

strategies (La Sorte et al. 2016a). By testing alternative

migration scenarios, it has also been shown that seasonal

variation in atmospheric conditions (La Sorte et al. 2014b)

and ecological productivity (La Sorte et al. 2014a) have

played primary roles in promoting the development of

these migration strategies. Researchers can now formulate

questions to address sources of variation within these

broad-scale commonalities, such as migration distances or

the presence of ecological barriers to migration (La Sorte

and Fink 2017).

Migration and breeding phenology. Big data are

contributing to ornithology where measured phenomena

happen over short periods of time with poor predictabil-

ity. The measurement of such phenomena has historically
required massive amounts of effort from scientists for

little data, whereas with big data researchers have the

power to monitor these phenomena nearly continuously

with little direct effort. For this reason, big data are

greatly advancing our understanding of avian phenology,

including the timing of migration and breeding pheno-

phases. Some big data resources, such as the citizen

science project Journey North, focus exclusively on

aspects of phenology such as migration arrival (Arab et

al. 2016). Likewise, eBird is increasingly being used to

understand migration phenology, particularly how the

timing of migration has been shifting in response to

recent climate change, and the extent to which these

shifts vary geographically and with species traits (Hurl-

bert and Liang 2012, Mayor et al. 2017). Breeding

phenophases (e.g., nest building, egg laying, egg hatching,

and fledging) have proven more difficult to measure, with

the exception of the dedicated citizen science project

NestWatch (Cooper 2014). There are many opportunities

for advances in extracting phenological signals from

passive sensors in the future, such as estimating the

timing of breeding activities based on the frequency of

passively recorded songbird vocalizations (Strebel et al.

2014).

Demography. Avian demographic research has played

an important role in advancing the field of avian

population ecology (Sæther and Bakke 2000, Sillett and

Holmes 2002) and has played a critical role in supporting

bird conservation (Green 1999). These efforts have taken

on greater relevance for migratory bird species as

researchers explore the demographic drivers underlying

current population declines (Morrison et al. 2016, Border

et al. 2017). Several large datasets with highly structured

protocols provide a unique platform for estimating

demographic parameters and population trends across

broad spatial and temporal extents. For example, long-

term ringing or banding programs, such as the North

American Monitoring Avian Productivity and Survivor-

ship (MAPS) program (Saracco et al. 2010, 2012) and the

British Trust for Ornithology’s (BTO) Constant Effort

Sites (CES) scheme, have allowed researchers to develop

more comprehensive and detailed models of population

change and viability (Cave et al. 2010, Ahrestani et al.

2017).

Geographic range shifts. For decades, geographic

ranges of birds were represented by static range maps

residing in field guides and largely based on expert

opinion. Big data have opened the door to displaying

geographic ranges in a more dynamic fashion that fully

captures the temporal complexity of bird distributions.

These efforts are promoting new avenues of research.

For example, under global warming, geographic range

boundaries of birds and other taxa are responding by

shifting to higher latitudes (Chen et al. 2011). Research-

ers have relied on structured datasets collected over

many decades to document these shifts for breeding and

wintering bird populations in North America and

Europe (Hitch and Leberg 2007, La Sorte and Thompson

2007, Mason et al. 2015). In recent years, these datasets

have shown that the patterns and drivers of range shifts

are considerably more variable than initially thought.
For example, geographic range shifts of variable

directions and intensities have been documented for

birds in North America (Bateman et al. 2016b), Great

Britain (Gillings et al. 2015), and Australia (VanDerWal

et al. 2013), and there is evidence that the geographic

responses of some species contain lag effects that can

encompass several decades (La Sorte and Jetz 2012). In

addition, there is evidence that range shifts cannot be

accurately predicted by species’ traits (Angert et al.

2011) and that changes in climatic factors such as

precipitation (McCain and Colwell 2011, Tingley et al.

2012) or the frequency and intensity of climatic

extremes (La Sorte et al. 2016b) can play a significant

role determining geographic responses. As the temporal

extent of semistructured and unstructured data contin-

ues to grow, researchers will be poised to document how

birds respond geographically to global warming with

greater temporal and spatial detail, further elucidating

the primary trends and their drivers.
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Challenges of Big Data Ornithology
Statistical issues. The massive volume and high

dimensionality of big data have promoted the development

of new statistical and computational methods, but

significant challenges for analysis and interpretation

remain. These challenges are often characterized as noise

accumulation, spurious correlations, and incidental endo-

geneity (Fan et al. 2014, Gandomi and Haider 2015).

A common feature of big data is high dimensionality, in

which many variables are measured across a large number

of samples. Applying traditional parametric approaches to

these datasets can be problematic when individual

variables within the dataset can be accurately predicted

by linear combinations of other variables (multicollinear-

ity). Under these circumstances, coefficient estimates can

respond erratically to small changes in the data or the

statistical model. Methods do exist that allow for robust

statistical inference when the numbers of parameters in a

dataset are exceptionally large (Bühlmann and van de Geer

2011). Big data resources in ornithology typically contain

few variables, but this can quickly change if ornithological

data is combined with highly dimensional environmental

datasets.

In addition to issues related to multicollinearity, when

estimating or testing many parameters simultaneously, the

accumulation of noise or errors has the potential to mask

variables that have true effects, an issue that can intensify

as data dimensionality increases (Fan et al. 2014). Sparse

models and variable selection can overcome issues related

to noise accumulation. However, variable selection using

highly dimensional data is also affected by spurious
correlations, incidental endogeneity, heterogeneity, and

measurement errors, compounding the challenges of

generating robust inferences (Fan et al. 2014).

Spurious correlation refers to uncorrelated variables
that are falsely classified as being correlated due to the

extreme size of the dataset. As shown by Fan et al. (2014),

the statistical significance of the correlation between 2

independent variables tends to increase as data volume

increases, which can result in spurious correlations and

erroneous conclusions. When analyzing large datasets,

incidental endogeneity is often present when the residual

term is dependent on some of the predictors. This

exogenous assumption (i.e. the independence of the

residuals and predictors) is central to most statistical

methods, and, unlike spurious correlations, this assump-

tion is violated when a genuine statistical relationship

exists.

In sum, understanding the statistical challenges associ-

ated with extremely large sample sizes and high dimen-

sionality is central to working with big data. To effectively

handle these challenges, methods designed to address data

complexity, noise, and data dependencies are needed (Fan

et al. 2014). Many of these methods are available or are

being developed, but researchers still need to apply these

methods with a clear understanding of existing limitations

and how they can affect resulting inferences. Inferential

quality can be further enhanced by using theory and

process to guide data selection and analysis, and by

avoiding open research questions that rely on exploring

data for correlations (Coveney et al. 2016).

Data veracity. With increased flexibility and less

structure comes substantial variability in data quality,

which is identified as data veracity. In response to the

concern of reduced precision and increased uncertainty,

some big data ornithology programs have developed

sophisticated processes of data validation. For example,

Project FeederWatch and eBird use a combination of

automated filters (Bonter and Cooper 2012) and expert

review (Kelling et al. 2013) to assess the veracity of

observations. The interaction between these 2 components

allows continued improvement in data quality through the

refinement of data filters that flag questionable records for

expert review. Ancillary data that estimate variation in

sampling effort (e.g., survey duration, transect length,

number of observers) can also be collected. Researchers

can use this information to create subsets of the data to

achieve the level of uncertainty or quality required to

address a specific research question or objective, often

without a significant loss of data volume. Ancillary

information can also be included as covariates in statistical

models, allowing researchers to standardize effort to a

common baseline when implementing analyses (Fink et al.

2010, 2014). Despite these approaches for enhancing data

veracity, there are still lingering issues around whether

these efforts are sufficient. Issues of trust, whether

grounded in reality or not, are likely to remain a challenge

for scientists seeking to use these resources. In particular,

the role of data veracity (especially false positives) will be of
express concern to users of unstructured data, where data

are generated with very limited filtering.

Future Contributions of Big Data to Ornithology
Crowdsourced ornithological data. Data on birds can

come from nontraditional sources to which users contrib-

ute either accidental or nontraditional ornithological data

online. A semistructured example would be the xeno-

canto database (www.xeno-canto.org), to which users

upload and identify avian vocalizations. With .350,000

recordings, xeno-canto provides opportunities to study

phenology and behavior beyond those available using

typical, structured vocalization datasets. Perhaps more

intriguing, however, is the potential contribution from

unstructured ornithological crowdsourcing via online

photography repositories (Leighton et al. 2016) or social

media (e.g., Twitter or Facebook). Such web platforms are

already used for crowdsourcing environmental and public

health information (Kamel Boulos et al. 2011, Alvaro et al.
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2015), and hold untapped potential for ornithological

research, particularly when human–bird interactions are of

interest.

Tracking migratory birds. Individual tracking technol-

ogy has become increasingly refined over the past several

decades, providing opportunities for rapid advancements in

the breadth and quantity of data that can be acquired on

individual migrating birds (Lopez-Lopez 2016). Geolocators

(Stutchbury et al. 2009) and, more recently, satellite

transmitters are providing increasingly more detailed

information on where migratory birds occur across space

and time, including information on flight speed and altitude

in some cases (Bridge et al. 2011). In addition to providing

movement information, other sensors are becoming avail-

able that can provide ancillary information on behavior or

characteristics of the surrounding environment (Wilmers et

al. 2015). Other advancements in individual tracking

technology include the Motus Wildlife Tracking System

(https://motus.org), which uses an automated array of

detectors that can be positioned across a broad geographic

region (Taylor et al. 2017). Data repositories such as

Movebank (http://www.movebank.org/) have also facilitated

the storage and retrieval of tracking information, which is

likely to take on greater relevance as the velocity and
volume of tracking data expands.

Autonomous recording units. Traditional field orni-

thology has relied on survey methods such as point counts

to monitor bird populations. The ongoing development
and implementation of autonomous recording units

(ARUs) are replacing these traditional methods by

sampling the acoustics of bird communities. ARUs can

provide repeated data collection over time, reduce the

potential for observer bias, allow sampling of many

locations (including remote or hard-to-access sites), and

provide a permanent record of the survey (Shonfield and

Bayne 2017). While ARUs can be very useful for surveys in

remote locations, especially of rare, cryptic, or secretive

species (Drake et al. 2016), and for general biodiversity

sampling (Shonfield and Bayne 2017), the consistent

methodology and ability to collect data over long periods

of time allow acoustic data to be integrated with other data

sources. For instance, information from ARUs can be used

to model bird occupancy over time across broad

geographic regions (Furnas and Callas 2015). Given the

decreasing cost of ARU technology, ARUs may offer new

and expanding research opportunities.

Real-time ecological assessments. Several big data

resources have the potential to provide real-time informa-

tion on the evolutionary and ecological implications of rapid

environmental change (La Salle et al. 2016). Observations

compiled by citizen scientists can play a key role in this

process (Bonney et al. 2009, Dickinson et al. 2010). For

example, estimates of bird occurrence or abundance (eBird)

or of migration intensity (WSR) can be used to address how

bird populations are affected by extreme weather events

(e.g., heat waves, droughts, tornadoes, and hurricanes;

Albright et al. 2010a, 2010b) or human-caused natural

disasters (e.g., oil spills or wildfires). One example that

represents the real-time potential of these efforts is a study

that examined the climatic drivers of Pine Siskin (Spinus

pinus) irruptive migration in North America (Strong et al.

2015). This study used 2 million Pine Siskin observations

from the Project FeederWatch citizen science program

(https://feederwatch.org/), which monitors the occurrence

and abundance of wintering birds at supplemental feeders

in North America, to assess how irruptions were correlated

with climatic variability. A second example is a study that

used eBird occurrence information to document how

migration phenology and breeding season occurrence for

353 North American bird species were affected by an

extreme warming event that occurred during spring

migration (La Sorte et al. 2016b). By advancing the quality

and efficiency of the methods used in these studies, there is

the potential to generate detailed and rigorous real-time

assessments of the implications of extreme events or natural

disasters for bird populations, which can be used to inform

conservation efforts on the ground as well as long-term

mitigation strategies.

Microscale behavioral ecology. Big data do not

necessarily need to be collected over big scales. Radio-

Frequency Identification (RFID) technology dates back to

the 1970s, but in recent years ornithologists have used

RFID to examine questions related to feeding rates,

incubation behavior, changes in body condition, move-

ment, dispersal, and social networks (see review by Bonter

and Bridge 2011). RFID-based studies are local and focus

on a limited number of species. The approach relies on

fastening a Passive Integrated Transponder (PIT) to the leg

band of a bird, and then equipping feeding stations with an
RFID data logger. Each time a PIT-tagged bird lands on a

feeder, its unique identification number and the date and

time of the visit are recorded. Given that these studies

include hundreds of individual birds, the resulting

databases can be extremely large and complex. For

example, a study conducted during a single winter season

in central New York, USA, generated a database consisting

of more than 450,000 feeder visits, including .200 visits

per day by a single individual (Bonter et al. 2013). Many of

these RFID networks are increasing in scale and scope,

wherein hundreds of RFID readers are collecting data

continuously on individual behavior. The use of RFID has

become so popular that an R package is available for

managing and graphing data collected from RFID-

equipped feeders (LaZerte 2017).

Conclusions
Big data resources and computational and analytical

techniques and tools provide singular opportunities for
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researchers to describe unique properties of complex

natural systems (Bar-Yam 2016), which in some cases may

complement insights generated using traditional observa-

tional or experimental approaches (Kelling et al. 2009). Big

data have contributed and continue to add empirical

breadth and detail to many scientific disciplines, but these

resources must be used with a clear understanding of their

limitations. Thus, in addition to developing ornithological

applications, effort is needed to better understand how

these limitations can be mitigated through refined

analytical methods or study designs, and how scientific

questions and hypotheses can be best formulated to

maximize inferential quality and rigor.
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W. Fléron, P. Hartl, R. Kays, J. F. Kelly, W. D. Robinson, and M.
Wikelski (2011). Technology on the move: Recent and
forthcoming innovations for tracking migratory birds. Biosci-
ence 61:689–698.

Bruderer, B. (1997a). The study of bird migration by radar, Part 1:
The technical basis. Naturwissenschaften 84:1–8.

Bruderer, B. (1997b). The study of bird migration by radar, Part 2:
Major achievements. Naturwissenschaften 84:45–54.
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