A time of change. Pottery styles from late Neolithic and iron-age cultures nearer the coast (area A) may have been a precursor of the earliest pottery, dated 2500 to 2100 years ago, found in the inner Congo Basin (area B) (3). Results reported by Bayon et al. suggest that this expansion of agriculturists may have been partly responsible for extensive changes in the rainforest between ~3700 and 2500 years ago (numbers 1 to 5) (5–7). Satellite-derived vegetation map of Central Africa from (2). Forest in green, forest-savannah mosaic in light green, woodland in brown, grassland in yellow, agriculture in pink.

with other proxies for continental temperature and precipitation.

Second, they measured hafnium (Hf) and neodymium (Nd) isotopes. Both the Nd and the Hf isotopic composition of rocks are determined by magmatic processes in the upper continental crust and depend on the rock source, but Hf isotopes are additionally changed by weathering of silicates. By comparing the isotopic composition of these trace elements in marine sediments, changes in silicate weathering can be deduced. Bayon et al. find that the Hf isotopic composition was relatively low during the Last Glacial Maximum (~20,000 years ago) and increased during deglaciation, whereas the Nd isotopic composition remained constant.

The results from both weathering proxies can be explained by changing climate, except for the period between 3000 and 2000 years ago. During the African rainforest crisis of the first millennium B.C.E., both proxies show that weathering increased despite reduced precipitation and constant temperatures.

Hence, although climate played a role in the rainforest crisis, it cannot have been the only factor. The explanation may lie with human activities, which may have had a strong impact on the forest through slash-and-burn agriculture and/or cutting trees for iron smelting (1). If so, then the next task will be to differentiate the relative impacts of human land-use effects and climatic influences.

The results of Bayon et al. also caution against using the tropical forest development of past millennia as a direct indicator of the West African monsoon. The climatic interpretation of the rainforest crisis invokes a shift in the yearly migration pattern of the Intertropical Convergence Zone to explain aridity and seasonality in West Central Africa (5–7). However, if only part of the forest change is climatically induced, any inferences using this forest decline will overestimate the aridification and increased seasonality of the past 3000 years.

References
4. C. Assi-Kaudjih et al., Geo-Eco-Trop 34, 1 (2010).

10.1126/science.1219903

1181

PERSPECTIVES

CELL BIOLOGY

Embryonic Clutch Control

William Razzell1 and Paul Martin1,2

All embryos, from worms to humans, are shaped during development by morphogenetic steps that tug, bend, fold, and sculpt epithelial sheets into forms that resemble, or are the precursors of, the final adult structure (1). Most of these changes are the consequence of constrictions of the apical surfaces of epithelial cells that are powered by pulsatile contracting cytoskeletal (actinomyosin) networks. On page 1232 of this issue, Roh-Johnson et al. (2) show that, just as in a car where the power of the engine is linked to forward movement by means of a clutch, clutch control is also the rate-limiting step for contracting cells in tissues.

One of the best-studied examples of apical constriction driving morphogenetic episodes is gastrulation in the fly Drosophila melanogaster, in which a strip of approximately 1200 epithelial cells buckles inward and invaginates to internalize the presumptive mesoderm of the embryo (3). Variations of this process drive gastrulation in all organisms, as well as other morphogenetic events such as neural tube formation in vertebrates (4), which gives rise to the brain and spinal cord, and to formation of the optic and otic vesicles, which develop into the human eye and inner ear, respectively (see the figure). Concerted apical constrictions of cells are generated by the assembly and contractility of actomyosin networks composed of myosin II molecules that tug on actin filaments (5). These networks are linked to the plasma membrane by adherens junctions, protein complexes that also weld one cell to its neighbor (6). Live imag-
Cell apical constrictions during embryonic morphogenesis. (A) Concerted apical constrictions in epithelial sheets drive invaginations to form structures such as the otic cup from which the human inner ear derives. (B) Constricting cells become wedge-like to drive many morphological movements. (C) As in a car, the engine (actomyosin flow) during gastrulation can run without output. Only when the clutch is engaged and the motor is directly linked to the effector (apical plasma membrane) can there be movement of the apical membrane.

Roh-Johnson et al. observed that cells “rev” their actomyosin engines at least once or twice before the first sign of cell contraction is seen. It might also be easier to subtly respond to local cues (for example, the faltering contraction by a neighboring cell) by slightly altering the degree of engagement of the clutch—as one might when starting a car on hills of different inclines—than by crudely switching the engine on or off.

What is the molecular basis of this clutch and how is it regulated? Roh-Johnson et al. show that disruption of the small GTP-binding protein Rac, or of various components of adherens junctions (cadherin and the catenins), disengages actomyosin flow from cell constrictions in the worm embryo. Further clues may come from observing the altered linkage between actomyosin contractions and the generation of tissue tension in fly embryos that harbor mutations in either of two key transcription factors, snail and twist (9). Or, possibly clutch machinery is regulated by a factor called folded gastrulation, a diffusible signal that synchronizes cell constrictions during fly gastrulation (10). Perhaps the ezrin-radixin-moesin family of proteins, which both transduces signals in the cell as well as links actomyosin with the plasma membrane (13), is a potential candidate for clutch proteins. We can now shift attention slightly away from the engine and unravel how the clutch works although, as those who drive manual transmission cars can attest, clutches are not always the easiest of gadgets to get to grips with.

References