Mitochondria & Generating Energy

How cells generate energy
ATP is used to drive energetically unfavorable reactions (such as molecular synthesis, active transport, motility) in coupled reactions.

- **Single reaction**
 - Reactants: Glucose, Fructose
 - Products: Sucrose
 - $\Delta G^\circ = +5.5 \text{ kcal/mole}$
 - NET RESULT: will not occur

- **Coupled reaction**
 - Reactants: Glucose, ATP
 - Products: Glucose-6-P, ADP, PO_4
 - $\Delta G^\circ = -1.8 \text{ kcal/mole}$
 - NET RESULT: sucrose is made in a reaction driven by the hydrolysis of ATP

Background material in Essential Cell Biology Chap 3

Review 4 major metabolic pathways involved in producing ATP in eukaryotic cells: Glycolysis, Krebs cycle, Electron transport, Oxidative phosphorylation

AEROBIC RESPIRATION

<table>
<thead>
<tr>
<th>REACTANTS</th>
<th>PROCESS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose, ADP, H^+, NAD$^+$</td>
<td>GLYCOLYSIS</td>
<td>Pyruvate, ATP, NADH</td>
</tr>
<tr>
<td>Pyruvate, NAD$^+$, FAD, GDP</td>
<td>KREBS CYCLE</td>
<td>CO2, GTP, FADH, NADH</td>
</tr>
<tr>
<td>NADH, FADH2, O2</td>
<td>ELECTRON TRANSPORT</td>
<td>H2O</td>
</tr>
<tr>
<td>H^+, ADP</td>
<td>OXIDATIVE PHOSPHORYLATION</td>
<td>ATP</td>
</tr>
</tbody>
</table>
Q: How can we determine where in the cell each of these pathways occur?
A: Fractionate cell into cytosol and organelles, add individual reactants for one pathway at a time, and then assay for the production of ATP.

The mitochondrion: contains two membrane-bounded compartments:

![Diagram of mitochondrion](image)

(0.5 - 1.0 µm diameter)

Q: How can we determine where in the mitochondrion the Krebs cycle occurs? where electron transport and oxidative phosphorylation occur?

The electron transport chain generates a proton (H⁺) gradient across the inner membrane. This proton gradient drives ATP synthesis. The protein that makes this possible is ATP synthase:

![Diagram of ATP synthase](image)

Protons flow down their gradient across the inner membrane by passing through a channel in ATP synthase, and this flow causes rotation of part of the ATP synthase. Conformational changes occurring in the rotation are used to phosphorylate ADP, producing ATP.