How to study cells

Tools used to answer biological questions. The methods are important, but it's what we discover with them that's really interesting.

1. Microscopy (chap 1)
 Role of microscopy in Cell Biology
 - Invention of light microscopes in or just before the 1600s - cells became visible for the first time
 - sole tool to study cells for centuries
 - light microscopy is still a valuable tool to cell biologists

 What microscopes do:
 - designed for magnification, resolution, & contrast
 - wavelength of light limits resolution
 - sizes of cells and cell components:

 ![Diagram of microscopy scales](image)

 - **Types of microscopy:**
 1. **light microscopy**
 a. conventional wide field
 b. phase contrast, differential interference contrast
 c. darkfield

 - staining: another important method for generating contrast
 - preparing cells/tissues for staining:
 - fixation
 - sectioning

d. **fluorescence microscopy**
 - fluorescent dyes (see figure) can be used to identify molecular structures.
 - Viewing fluorescent cells:
 1. Epi-fluorescence illumination (see figure)
 2. Laser-scanning confocal microscopy (see figure)
 - Immunofluorescence - use of antibodies
 - Indirect immunofluorescence
 - Fluorescent proteins
fluorescein

![Fluorescein chemical structure]

epifluorescence microscopy

![Epifluorescence microscopy diagram]

confocal microscopy

(A) excitation

Confocal pinholes are used to focus the light onto the sample. A laser illuminates the sample, and a dichroic mirror reflects the excitation light while allowing the emission light to pass through.

(B) emission

The fluorescent specimen is illuminated with a focused point of light from a pinhole. The emitted light from the in-focus point is focused at the pinhole and reaches the detector.

(C) emitted light

Emitted light from out-of-focus point is cut out of focus at pinhole and is largely excluded from detector.

Figure 9-12, Molecular Biology of the Cell, 4th Edition.
2. Electron Microscopy
- TEM (Transmission electron microscopy)
- SEM (Scanning electron microscopy)

Figure 9-22. Molecular Biology of the Cell, 4th Edition.

Figure 9-29. Molecular Biology of the Cell, 4th Edition.
Comparing limits of resolution

<table>
<thead>
<tr>
<th>Light Microscopy</th>
<th>Typical Wavelength</th>
<th>Limit of Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional wide field</td>
<td>500 nm</td>
<td>200 nm</td>
</tr>
<tr>
<td>Epifluorescence</td>
<td>500 nm</td>
<td>200 nm</td>
</tr>
<tr>
<td>Laser scanning confocal</td>
<td>500 nm</td>
<td>200 nm</td>
</tr>
<tr>
<td>Electron Microscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>0.01 nm</td>
<td>1-2 nm</td>
</tr>
<tr>
<td>SEM</td>
<td>0.01 nm</td>
<td>10-20 nm</td>
</tr>
<tr>
<td>X-Ray Crystallography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffraction analysis</td>
<td>0.15 nm</td>
<td>0.1 nm</td>
</tr>
</tbody>
</table>

2. Isolation and growth of cells
- Direct manipulation of cells
- Cell culture: primary cultures, cell lines

3. Isolating cellular components
Cellular components can be studied in isolation
- breaking cells
- centrifugation
3 methods of centrifugation:

(1) differential centrifugation
4. DNA, RNA & Protein methods

DNA & RNA methods such as reverse transcription, cloning, PCR, etc. learned in 103 & 220 are important tools for studying cells; will not be reviewed here. Protein methods will be discussed in the next lecture.