Cell communication

- will come up often in development half of course

How we know that cells must signal to each other
- Direct manipulations of cells
- Ablation of cells
- Genetic evidence for signaling

General principles of how cells signal to each other
- Signals can act over short or long range
- How many signals a cell can respond to
- How receptors relay signals to affect cell behavior: signal transduction
- Signals that enter cells
 - Steroid hormones
 - Cortisol
 - Estradiol
 - Testosterone
 - Thyroxine
- Nitric oxide (NO)

Cell surface receptors
- Ion channel-linked receptors
- Molecular switches

Signal transduction

(A) Signaling by Phosphorylation
(B) Signaling by GTP-Binding Protein
How G-protein-linked receptors work

Activation of G protein subunits

1. **Activation of G protein subunits**
 - **(A)**
 - Receptor protein
 - Inactive G protein
 - Signal molecule
 - Plasma membrane
 - **(B)**
 - Extracellular space
 - Cytosol
 - Activated G-protein subunits
 - **(C)**
 - Activated α subunit
 - Activated βγ complex

Regulation of ion channels

1. **Regulation of ion channels**
 - **(A)**
 - Acetylcholine
 - Closed K⁺ channel
 - **(B)**
 - Activated βγ complex
 - Open K⁺ channel
 - Channel opening
 - **(C)**
 - Inactive G protein
 - Closed K⁺ channel

Activation of membrane bound enzymes

1. **Activation of membrane bound enzymes**
 - Activated βγ complex
 - Activated enzyme
 - Many intracellular messenger molecules diffuse widely to act on target proteins and other signaling proteins in various parts of the cell
The cyclic-AMP pathway

Phospholipase C

Calcium as a signal

Enzyme-linked receptors
Receptor tyrosine kinases
The GTP-binding protein Ras
cell signaling and cancer
Protein kinase networks