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The production of reactive oxygen intermediates (ROI) is

among the earliest temporal events following pathogen

recognition in plants. Initially, ROI were thought to be cell-death

executioners. Emerging evidence, however, suggests a

broader role for ROI as signals that mediate responses to

infection, the abiotic environment, developmental cues, and

programmed cell death in different cell types. The Respiratory

burst oxidase homolog (Rboh) gene family encodes the key

enzymatic subunit of the plant NADPH oxidase. Rboh proteins

are the source of ROI produced following pathogen recognition

and in a variety of other processes.
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Introduction
The bi-phasic production of apoplastic reactive oxygen

intermediates (ROI), the so-called ‘oxidative burst’, is a

hallmark of successful recognition of plant pathogens

[1,2,3�]. Since Doke [4] first reported the generation of

superoxide anions (O2
�) during incompatible (plant resis-

tant) interactions between potato and the late blight

pathogen Phytophthora infestans, O2
� and/or hydrogen

peroxide (H2O2), its dismutation product, have repeat-

edly been detected in successful resistance responses

[2,5]. Yet, the diverse functions of ROI, and the mechan-

ism that regulates the initial generation of superoxide

were elusive until recently.

ROI can be produced inside the plant cell, in chloroplasts,

mitochondria and peroxisomes, as byproducts of meta-

bolic processes such as photosynthesis and respiration

[6��]. Several biochemical mechanisms have been pro-

posed to explain ROI production. Apoplastic H2O2 pro-
www.sciencedirect.com
duction can be mediated by cell-wall peroxidases,

germin-like oxalate oxidases or amino oxidases [6��,7��].
However, key lines of evidence implicated an NADPH

oxidase, analogous to that which generates superoxide

during the respiratory burst in mammalian phagocytes, as

the source of the ROI detected in plants upon successful

pathogen recognition. First, O2
� is the primary radical

produced in most systems [4,5,8]; second, the rate of ROI

production per elicited cell is similar in mammals and

plants [9]; and third, ROI generation is inhibited by

diphenylene iodonium, a well-characterized inhibitor of

the mammalian NADPH oxidase (and flavin-containing

enzymes) [8,10].

The mammalian NADPH oxidase, also known as the

respiratory burst oxidase (RBO), is a protein complex that

is comprised of a membrane-bound NADPH-binding

flavocytochrome b558 and cytosolic regulatory proteins.

In phagocytes, these regulatory proteins include the

p47phox, p67phox and p40phox phosphoproteins and Rac2,

a small GTP-binding protein [11,12]. The membrane

cytochrome consists of the glycosylated transmembrane

protein gp91phox and the non-glycosylated p22phox sub-

unit. gp91phox contains the entire electron transport chain

from NADPH to molecular oxygen to produce superoxide

outside the plasma membrane. The NADPH oxidase

exists in vesicles that are activated via Rac dissociation,

phosphorylation of p47phox and p67phox and their subse-

quent recruitment to the membrane-bound complex

[11,12]. In humans, chronic granulomatous disease

(CGD) results from mutations that render the NADPH

oxidase in phagocytes non-functional, and CGD patients

suffer recurrent and prolonged microbial infections [13].

Mutations in gp91phox account for all cases of X-linked

CGD [13]. It was initially thought that direct toxicity of the

ROI that are generated by the oxidative burst was respon-

sible for the microbial killing activity of mammalian pha-

gocytes. Surprisingly, superoxide that is generated via

NADPH oxidase activity plays a signaling role in microbial

killing, leading to K+ flux that activates specific proteases

[14,15]. Additional NADPH oxidases, different from those

in phagocytes, have been identified in mammals [11,12].

These exhibit tissue-specific expression and mediate

functions from cell proliferation to thyroid hormone bio-

synthesis. Thus, multiple isoforms of gp91phox act in

NADPH oxidases from different cell types, and perform

different functions in mammalian cells.

The plant Rboh-encoded NADPH oxidase
The first plant NADPH oxidase gene to be identified was

the rice gene OsrbohA, which is related to mammalian
Current Opinion in Plant Biology 2005, 8:397–403
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Relationship and domain structure of the NADPH oxidases.

(a) Phylogenetic tree comparing the mammalian NADPH oxidases

with the Arabidopsis Atrboh proteins: AtrbohA (At5g07390), AtrbohB

(At1g09090), AtrbohC (At5g51060), AtrbohD (At5g47910), AtrbohE

(At1g19230), AtrbohF (At1g64060), AtrbohG (At4g25090), AtrbohH

(At5g60010), AtrbohI (At4g11230), AtrbohJ (At3g45810). The rbohA

described in [18] is identical to AtrbohF in [17,32] and is represented

here as AtrbohF. Only the carboxy-terminal with homology to gp91phox/

NOX2 (excluding the EF hands) was used in the alignment.

(b) Schematic representation of the NADPH oxidase proteins with

their functional domains. Mammalian NOX1, NOX3 and NOX4 are

similar to gp91phox/NOX2. The plant Rboh are similar to AtrbohD.

FAD, flavin adenine dinucleotide, DUOX1, Dual oxidase1.
gp91phox [16]. Subsequent studies documented different

Respiratory burst oxidase homolog (Rboh) genes in other

plant species, including Arabidopsis, tomato, tobacco

and potato [17–19,20�,21,22]. Cell fractionation indicated

that at least two Rboh proteins are located in the plasma

membrane [18,22]. As in the mammalian NADPH oxi-

dase, the rice homologs of human Rac2 can regulate ROI

production and HR [23]. But simple comparisons of the

regulation and assembly of NADPH oxidases between

plants and animals end there. For example, no homologs

of the mammalian p47phox or p67phoxwere found in the

Arabidopsis genome [24]; and initial reports [25] that

antibodies against the mammalian p47phox and p67phox

proteins cross-reacted with plant proteins of similar size

have been dismissed [26].

Plant species contain Rboh gene families that have homol-

ogy to gp91phox. Arabidopsis encodes ten Atrboh genes

([17,24]; Figure 1a). All plant Rboh genes carry a presum-

ably cytosolic 300-amino-acid amino-terminal extension

with two EF-hands that bind Ca2+ [18], which could

account for the direct regulation of these oxidases by

Ca2+. This is relevant in several functional contexts in

which Ca2+ signaling precedes ROI production. This

domain is absent from the mammalian phagocyte

gp91phox but is present in other mammalian NADPH

oxidase homologs (Figure 1b). For example, the mam-

malian NADPH oxidase 5 (NOX5) protein contains four

EF-hands in its amino-terminal region and exhibits

Ca2+-dependent production of superoxide [27]. In con-

trast to the mammalian gp91phox, plant Rboh proteins can

produce O2
� in the absence of additional cytosolic com-

ponents, and are stimulated directly by Ca2+ [28]. Thus, a

superoxide-generating NADPH oxidase exists in plants,

although its precise subunit structure and the regulation

of its activation are different than in mammalian phago-

cytes.

The Rboh-NADPH oxidase and biotic
interactions
ROI were initially proposed to orchestrate the establish-

ment of the plant defense response and the hypersensi-

tive response (HR) cell death that often accompanies

successful pathogen recognition [29,30]. Several groups

have reported that Rboh genes are transcriptionally upre-

gulated by pathogens or fungal elicitors [21,22,31].

Genetic proof of the function of Rboh in the pathogen-

induced oxidative burst came from analysis of Rboh
mutants and antisense lines. Infection of Arabidopsis
mutants that lack functional AtrbohD and AtrbohF demon-

strated that AtrbohD is responsible for nearly all of the

ROI produced in response to avirulent bacterial or oomy-

cete pathogens, whereas AtrbohF is important in the

regulation of HR [32]. Antisense reduction of NtrbohD
indicated that the Rboh encoded by this gene is respon-

sible for the production of ROI after treatment of tobacco

cells with the fungal elicitor cryptogein [22]. Silencing of
Current Opinion in Plant Biology 2005, 8:397–403
NbrbohA and NbrbohB in Nicotiana benthamiana plants led

to less ROI production and reduced resistance to infec-

tion by Phytophthora infestans [20�]. There is also evidence

of functional overlap between different Rboh proteins.

For example, in Arabidopsis, the phenotypes of the indi-

vidual atrbohD and atrbohF mutants are accentuated in

the double mutant atrbohD/atrbohF [32,33��]. These data

suggest a complex signaling network with interactions

between different members of the Rboh family.

Interestingly, the downregulation or elimination of Rboh
leads to variable effects on pathogen growth and HR. For
www.sciencedirect.com
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example, Nbrboh-silenced plants are more susceptible to

normally avirulent P. infestans and HR is suppressed in

these plants [20�]. By contrast, the Arabidopsis atrbohF
mutant is more resistant to a weakly virulent strain of the

oomycete Peronospora parasitica, and actually expresses

enhanced HR [32]. Thus, although the Rboh proteins are

required for pathogen-induced ROI production, these

ROI might serve different signaling functions in disease

resistance and HR.

Interactions with other plant defense regulators might

account for the divergent outcomes of NADPH-depen-

dent ROI signaling. Exogenously applied ROI can act

synergistically in a signal-amplifying loop with salicylic

acid (SA) to drive HR [34,35]. However, our recent

studies indicate that ROI that are produced via AtrbohD

actually antagonize SA to stop the spread of cell death

beyond the site of HR (MA Torres, JDG Jones, JL Dangl,

unpublished results). Also, coordinated levels of ROI and

nitric oxide (NO) are required to produce HR [36], and

both can mediate abscisic acid (ABA)-induced stomatal

closure [37�]. These surprising results underscore how

ROI that are produced via Atrboh proteins can mediate

different functions in different contexts, and suggest that

we have some way to go to explain the function of ROI in

response to infection.

Characterization of plant Rac2 homologs (called Rop for

Rho-like proteins [38�]) also tied plant NADPH oxidases

to ROI production during defense signaling and cell

death [23,39�]. These analyses also suggested that the

combination of specific Rac isoforms with specific Rboh

isoforms might have differential regulatory effects. For

example, Osrac1 is a positive regulator of ROI production

and cell death [40], whereas Ntrac5 acts as a negative

regulator of NtrbohD-dependent ROI production after

elicitation with cryptogein [41�]. Rac/Rop signaling is

also involved in oxygen deprivation, potentially via an

NADPH oxidase, and RopGAP4 acts as a rheostat to

control ROI production in this context [42]. Comparisons

among these datasets are complicated by the use of

different plant species to study combinations of Rac
and Rboh family members. These disparate datasets

highlight the necessity of careful analysis of the functions

of all Rboh family members in a single model system

and in a variety of developmental and environmental

contexts.

The Rboh-NADPH oxidase in abiotic stress
and development
ROI that are generated by plant Rboh-NADPH oxidases

also regulate abiotic stress responses and development.

ROI function as intermediates in ABA signaling during

stomatal closure [43]. H2O2 induces the activation of

Ca2+ channels to mediate the increase in cytosolic

Ca2+ concentration in intact guard cells [44]. AtrbohD
and AtrbohF are expressed in guard cells and are tran-
www.sciencedirect.com
scriptionally induced in response to ABA. The Arabidop-
sis atrbohD/atrbohF double mutant is impaired in ABA

activation of Ca2+ channels and stomatal closure, whereas

exogenous application of H2O2 restored Ca2+ channel

activation and partial stomatal closure in atrbohD/atrbohF
[33��]. This study provided genetic evidence that Atrboh

proteins mediate ABA signaling in stomata, and sug-

gested that the same Atrboh isoforms might mediate

different ROI-dependent functions in different cellular

contexts.

In this light, it is important to note that a third family

member, AtrbohC regulates cell expansion during root-

hair formation. Analysis of the atrbohC mutant (also called

root hair defective 2 [rhd2]) revealed that ROI that are

produced by AtrbohC activate hyper-polarization Ca2+

channels that are responsible for localized cell expansion

during the root-hair formation [45��]. In this case, the very

reactive hydroxyl radical (OH�), which is generated from

H2O2 in the presence of transition metals (such as Cu2+ or

Fe2+), is the specific ROI implicated.

Thus, ROI that are generated via the NADPH oxidase

and the activation of Ca2+ channels might represent a

signaling link that is common to many plant responses. In

the defense response, the oxidative burst has also been

implicated in activating Ca2+ influx [46]. Yet, Ca2+ is also

required for ROI production both after pathogen infec-

tion and following ABA treatment [47,48,49�], and Ca2+

can activate an Rboh protein in vitro [28]. Therefore, Ca2+

fluxes appear to function both upstream and downstream

of ROI production, indicating a complex spatio-temporal

Ca2+ regulation of these signaling networks [46]. Fungal

elicitors can induce both ROI and, through the activation

of Ca2+ channels in guard cells, stomatal closure [50].

Thus, the NADPH-oxidase-dependent activation of Ca2+

channels might represent a cross-talk point between ABA

and defense signaling.

Phosphorylation might also play important roles both

upstream and downstream of Rboh function (see [6��]
for review). Yoshioka et al. [20�] reported that MAPK-

induced cell death might be mediated by ROI produced

by NbrbohB, and that the same MAPK cascade acts to

increase NbrbohB levels. Particularly relevant in this

regard is the identification of Oxidative signal inducible

1 (OXI1)/AGC2-1 (AGC2-1 for protein related to cAMP-

dependent and Cgmp-dependent protein kinases, and

protein kinase C 2-1), a kinase involved in phospholipid

signaling that is upregulated by stimuli that produce ROI

[51��,52��]. Interestingly, the oxi1 knockout displays

alterations in root-hair formation, suggesting that the

OXI1 gene is linked to AtrbohC function.

ROI have been implicated in the regulation of cellular

responses to stresses other than pathogen infection. For

example, H2O2 acts as a second messenger for the induc-
Current Opinion in Plant Biology 2005, 8:397–403
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tion of defense genes in response to systemin and jasmo-

nate during wound responses [53]. Using anti-sense trans-

genics, Sagi et al. [54�] showed that ROI that are produced

by an Rboh are required for the expression of certain

wound-response genes. Reduced expression of Rboh addi-

tionally induced multiple pleiotropic developmental

effects, resulting in the ectopic expression of flower-

specific homeotic genes and an altered redox-related

metabolism. These findings suggest that ROI that are

produced by Rboh influence metabolic balances acting in

several hormone signaling pathways. It is difficult to

know, however, how many different isoforms of Rboh

were affected in these anti-sense transgenics.

The response to ozone (O3) also induces an oxidative

burst that has similarities to the pathogen-induced oxi-

dative burst [55�]. In Arabidopsis, ozone exposure drives

both the spatial and the temporal progression of ROI

signaling, commencing with the elevation of ROI levels

in guard-cell chloroplasts and membranes, and spreading

to neighboring cells [56��]. AtrbohD and AtrbohF have

been implicated in the intercellular signaling and ulti-

mate cell death that arises from O3 exposure [56��].
Interestingly, heterotrimeric G proteins control this

ROI production and sensitivity to O3. Heterotrimeric

G protein was also implicated in the regulation of ROI

production through activation of extracellular calmodulin

during stomatal closure [57��]. Also, heterotrimeric G

protein functions upstream of Osrac1 in the regulation

of the defense response and cell death in rice [58].

Together, these studies suggest that heterotrimeric G

proteins might be a common intermediate for ROI sig-

naling in responses to different stimuli.

For ROI to exert a signaling function, the production and

removal of ROI have to be tightly controlled and com-

partmentalized. In addition to the enzymatic production

of ROI, chloroplasts (and also mitochondria and peroxi-

somes) can generate ROI during metabolic processes

[6��]. Plant cells possess a battery of scavenging systems,

including ascorbate peroxidases, glutathione, superoxide

dismutases and catalases (see the excellent review by

Mittler et al. [7��]), that maintain ROI homeostasis. The

downregulation of scavenging systems in response to

stress can lead to an oxidative burst and cell death that

is phenotypically similar to HR [59�]. Davletova et al.
[60��] showed that cytosolic ascorbate peroxidase APX1

provides cross-compartment protection to the chloroplast

during light stress, and that AtrbohD might be required for

an ROI-dependent signal that maintains high APX1

levels during light stress. Trienoic fatty acids from the

chloroplast might mediate this activation [61�]. In

tobacco, NtrbohD was upregulated in catalase-deficient

plants in response to elevated levels of H2O2 that were

produced under high light [59�], suggesting that ROI

produced by the Rboh-NADPH oxidase also modulate

the response to light stress.
Current Opinion in Plant Biology 2005, 8:397–403
Conclusions and future directions
Like mammals, plants have an Rboh gene family, and

recent data suggest that specific Rboh genes function in

different cellular contexts. The identification of the Ara-
bidopsis RbohD-NADPH oxidase as the enzyme respon-

sible for the production of apoplastic ROI in response to

pathogens answered a question first posed 25 years ago

[1,4]. The Arabidopsis Rboh protein family has a diversi-

fied functional portfolio. AtrbohC appears to have a very

specific function in root-hair development, whereas Atr-

bohD and AtrbohF display pleiotropic functions follow-

ing pathogen recognition and during ABA signaling. The

accentuated phenotypes of the double mutant, compared

to that of either single mutant, indicates functional over-

lap between AtrbohD and AtrbohF function, suggesting

that interactions between different family members

might help fine tune both ROI production and the

response to that production. Further characterization of

the other Rboh family members and the identification of

knockout/knockdown lines for these genes should define

additional functions for plant NADPH oxidases and the

ROI that they produce.

Analyses of Rboh function suggest that ROI act in complex

signaling networks that operate in responses to develop-

mental cues or to the environment. Particularly relevant

are the links between Rboh-dependent ROI production

and Ca2+, and the regulation of Rboh function by Rac/Rop

(in common with mammalian gp91phox) by heterotrimeric

G proteins or by phosphorylation. Also, SA and NO are

important defense-response regulators that interact with

ROI signaling in response to pathogens. Thus, ROI that

are produced by the Rboh-containing NADPH oxidase are

part of many signaling pathways and provide a crucial link

in the cross-talk to difference responses.

Plants have to cope with excess ROI produced during

metabolism, and have evolved sophisticated ways to use

the reactive properties of these ROI to modulate cellular

signals by tightly regulating ROI production and com-

partmentalization. We are just beginning to dissect the

functions of plant Rboh proteins and to understand the

varied functions of the ROI they ultimately produce.
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