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Detailed bacterial isolation and genome sequencing process 
 
Bacterial strains from Brassicaceae and Poplar were isolated using previously 

described protocols1,2. Poplar strains were cultured from root tissues collected 

from Populus deltoides and Populus trichocarpa trees.   Strains designated CF and YR 

were isolated from native Populus deltoides growing in central Tennessee along the 

Caney Fork river and eastern North Carolina along the Yadkin river, respectively. The 

strains designated OV and OK were isolated from common garden grown Populus 

trichocarpa  trees in Corvallis and Clatskanie, Oregon, respectively. Root samples were 

processed as described previously3–6. Briefly, rhizosphere strains were isolated by 

plating serial dilutions of root wash, while for endosphere strains, surface sterilized roots 

were pulverized with a sterile mortar and pestle in 10 mL of MgSO4 (10 mM) solution 

followed by plating serial dilutions. For surface sterilization, roots were washed 5 times 

with sterile water, followed by 30s incubation in 95% ethanol, 3 min incubation in 5% 

NaOCl, then 6 washes with sterile water3. Strains were isolated on R2A agar media, 

and resulting colonies were picked and re-streaked a minimum of three times to ensure 

isolation. Isolated strains were identified by 16S rDNA PCR using primers 8F 

(AGAGTTTGATCCTGGCTCAG) and 1492R (GGTTACCTTGTTACGACTT) followed by 

Sanger sequencing and analysis.   

For maize isolates, we selected soils associated with two different maize 

genotypes grown in two regions. Il14h, a sweet corn inbred line, and Mo17, a non-stiff 

stalk maize inbred line, were grown in two different fields (Lansing, NY and Urbana, IL). 

The rhizosphere soil samples from three replicates of each maize genotype grown at 

each field at week 12 after planting were collected as previously described7. A total of 

12 rhizosphere soil samples were used to culture Pseudomonas isolates. From each 

rhizosphere soil sample, 0.1g soil was washed in 5 mL sterile phosphate buffered saline 

with 10% glycerol for 1 hour with gentle rocking at room temperature. 100 µL of the 

wash liquid was plated onto Pseudomonas Isolation Agar (BD Diagnostic Systems, 

Franklin Lakes, NJ) using a disposable inoculating loop. The plates were incubated at 

30°C until colonies formed. To extract genomic DNA, single colonies were inoculated 

into 5 mL LB, and grown at 30°C overnight. The cultures were harvested by 

centrifugation at 5000 × g for 5 min, and the cells were lysed using the B1 and B2 
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solutions as described in the Qiagen Genomic DNA Handbook (Qiagen, Valencia, 

CA).  The genomic DNA was precipitated with ethanol and sodium acetate, and pelleted 

after a centrifugation at 1811 × g for 30 min. PCR and Sanger sequencing of 16S rDNA 

were used to confirm the identity and purity of the genomic DNA preparations. The 

genomes of the first four Pseudomonas isolates cultured from each rhizosphere soil 

sample were sequenced. Thus, a total of 48 Pseudomonas isolate genomes were 

sequenced.  

For isolation of single cells, A. thaliana accessions Col-0 and Cvi-0 were grown 

to maturity in 2.5 cm KORD pots (Canada) in Mason Farm or Clayton soil/sand mix (2 

parts soil, 1 part sand)8. The pots containing the roots were turned upside down and the 

root mass was removed, carefully rolling and kneading the root mass to allow most of 

the soil to fall away. Dirty root masses were submerged and stirred in a separate 4L 

beaker of distilled water, allowing most soil to dislodge and sink. Roots were transferred 

to clean water and the process repeated, until the stirred water no longer appeared 

murky. All remaining soil and biological debris were carefully picked away from each 

root using sterile tweezers. For surface sterilization, the pool of visually clean roots was 

transferred to separate 250 mL glass bottles, each containing 200mL of a 1:10 dilution 

of household bleach in water containing 0.1% Triton X-100. Surface sterilization 

proceeded for 10 min with gentle agitation (inversion). The bleach solution was 

decanted and immediately replaced twice with autoclaved distilled water. The plant 

material was then treated for 2 minutes with 200mL of 2.5% sodium thiosulfate to fully 

neutralize the bleach; this was then washed twice more with autoclaved distilled water. 

Surfaced sterilized roots and leaves were then ground using a sterile mortar and pestle 

(grinding surfaces were sprayed with 95% ethanol and flamed several times) in a 

laminar flow hood. MES buffer (2.5 mM, ph 6.0) was added as needed to maintain a 

liquid consistency while grinding. Two parts of plant lysate were mixed with one part of 

autoclaved 80% glycerol for a 27% final glycerol concentration. This mixture was 

thoroughly mixed and pipetted in 1.5 mL aliquots into 2mL capacity cryovials and snap-

frozen until further processing, resulting in 10-20 vials per condition. 

To prepare cells for cell sorting, each glycerol stock was thawed on ice and 

diluted with 10mL sterile MES buffer (pH 6) to reduce viscosity. The solution was filtered 
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through a 100 micron cell strainer (Fisherbrand) into a 50mL tube, and subsequently 

aspirated with a syringe and passed through an 11 micron syringe filter (11µm Millipore 

nylon mesh in a Millipore Swinnex Filter Holder) to remove remaining plant particulates. 

The flow through was centrifuged for 5 min at 10,000 x g to re-concentrate the cells, and 

resuspended in 1mL of MES buffer plus 500uL 80% glycerol. This tube was vortexed, 

flash frozen, and shipped to the JGI for further processing. Individual cells were isolated 

using fluorescence-activated cell sorting (FACS) followed by DNA amplification using 

multiple displacement amplification (MDA), and 16S rDNA screening as described 

previously9,10. 

DNA from isolates and single cells was sequenced using next generation 

sequencing platforms, mostly using the Illumina HiSeq technology (Table S3). Libraries 

for Illumina sequencing were prepared using the following protocol: Plate-based DNA 

library preparation for Illumina sequencing was performed on the PerkinElmer Sciclone 

NGS robotic liquid handling system using a Kapa Biosystems library preparation kit. 200 

ng of sample DNA was sheared to 300 bp using a Covaris LE220 focused-

ultrasonicator. The sheared DNA fragments were size selected with solid phase 

reversible immobilization (SPRI) beads two times and then the selected fragments were 

end-repaired, A-tailed, and ligated with Illumina compatible sequencing adaptors from 

IDT containing a unique molecular index barcode for each sample library. The prepared 

library was then quantified using KAPA Biosystem’s next-generation sequencing library 

qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified 

library was then then multiplexed with other libraries, and the pool of libraries was then 

prepared for sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq 

paired-end cluster kit, v3 or v4, and Illumina’s cBot instrument to generate a clustered 

flowcell for sequencing. Sequencing of the flowcell was performed on the Illumina 

HiSeq2000/2500/1TB sequencer using a TruSeq SBS sequencing kit, v3 or v4, 

following a 2x150 indexed run recipe.  

For the three genomes that were sequenced using MiSeq (Table S3), the 

libraries were prepared using the Nextera XT kit.  

Some genomes were sequenced using 454 technology. Libraries were prepared 

using the following protocol: double-stranded genomic DNA samples were fragmented 
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via sonication to 400-800 base pairs. These fragments were end polished and ligated to 

a set of Y-shape adaptors. The 454 library fragments were then clonally amplified in 

bulk by capturing them through hybridization on microparticle beads and subjecting 

them to emulsion based PCR resulting in beads that were covered with millions of 

copies of a single DNA fragment (size range 400-800bp) where each bead contained a 

different clonally amplified library fragment. After amplification, the beads were 

recovered from the emulsions and loaded into the wells of a PicoTiterPlate device (PTP) 

such that wells contained single DNA beads. The PTP was then inserted into 

the 454 Genome Sequencer FLX-Titanium instrument for sequencing where 

sequencing reagents were sequentially flowed over the plate and the sequence of the 

DNA fragments was determined. 

Sequenced genomic DNA was assembled using different assembly methods 

(Table S3). Genomes were annotated using the DOE-JGI Microbial Genome Annotation 

Pipeline (MGAP v.4)11 and were deposited at the Integrated Microbial Genomes (IMG) 

database12, ENA13 or Genbank14 for public usage.  

  

Analysis of the nine taxa prevalence in 16S and metagenome surveys 

We used 16S rDNA surveys and metagenomes of the plant environment of 

Arabidopsis8,15, barley16, wheat, and cucumber17. The published information of the 

relative abundance and taxonomic assignments of operational taxonomic units (OTUs) 

was retrieved. Based on the taxonomic assignment the relative abundances of OTUs 

within a specific taxon were summed to yield the relative abundance of that taxon. If 

there were multiple replicates of an experiment we used the median value. Reads 

mapped outside of the bacteria kingdom were ignored in relative abundance 

calculations. 

 

Assessment clustering quality using taxon-specific markers 
 
In order to estimate the quality of the clusters output by UCLUST and Orthofinder, we 

ran the Phyla_Amphora18 script MarkerScanner.pl using the default parameters over the 

3837 genomes in our dataset. This resulted in the identification of sequences that are 
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homologues to the curated set of taxon markers contained in Phyla_Amphora. We used 

a custom script to summarize the marker scanning results in a table depicting the 

distribution of detected markers across the CDS ids and Genome ids in our dataset. 

Next, we compared the distribution of each of the taxon-specific markers identified by 

Phyla_Amphora across the clusters output by UCLUST and Orthofinder.  

 For each taxon-specific marker, we determined how many proteins in a given 

taxon (e.g Pseudomonas) were identified as a homologue to that marker. Then, we 

quantified the distribution of these homologues across the clusters output by UCLUST 

and Orthofinder. Ideally, all the homologues of a taxon-specific marker should be 

clustered in a single cluster of CDS (an orthogroup), in addition, that single cluster 

should contain only the CDS identified as homologues to the taxon marker. Using this 

logic, we estimated two metrics: the purity and fragmentation index. The purity index 

quantifies how many CDS are contained across all the clusters (UCLUST, Orthofinder) 

needed to cover the total number of CDS identified as homologues to a specific 

Phyla_Amphora taxon marker. The fragmentation index quantifies the number of 

clusters (UCLUST, Orthofinder) needed to cover the total number of CDS identified as 

homologues to a specific Phyla_Amphora taxon marker. The two metrics described 

above were calculated over each of the 9 taxa individually. The data and scripts utilized 

to compute these measurements across all taxa are available on: 

https://github.com/isaisg/gfobap/tree/master/phyla_amphora_benchmark 

The plots generated from this analysis were generated using the ggplot19 (v 2.2.1) 

package from R.  

 

Construction of pan genome matrices, relational tables and HMM databases from 

the Orthofinder orthogroups 

For each of the nine taxa, we used custom scripts to transform the orthogroup result 

output from Orthofinder into pan genome matrices depicting the distribution of 

orthogroups across the genomes of that given taxon. Additionally, we constructed tables 

exhibiting the distribution of orthogroups across genomes based on the CDS IDs. The 

pan genome matrices and tables described above can be downloaded from: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/matrices_df_ogs.html 

https://github.com/isaisg/gfobap/tree/master/phyla_amphora_benchmark
http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/matrices_df_ogs.html
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The scripts used to compute the matrices and tables can be found in: 

https://github.com/isaisg/gfobap/tree/master/orthofinder_orthogroups_to_matrices_dataf

rames 

 

Additionally, for each orthogroup in our dataset consisting of more than two CDS, 

we built multiple sequence alignments using MAFFT20 (v7.305b). Subsequently, we 

used these alignments as inputs for Hidden Markov Model (HMMs) construction using 

the hmmbuild command from the HMMER suite21 (v 3.1b2). We built nine HMM 

databases, one corresponding to each of the nine taxa analyzed in this study. Also, to 

complement these databases, we developed a scanning pipeline that utilizes the 

HMMER suite to search for the HMM orthogroups in our nine databases over any 

genome provided to the pipeline. The MAFFT alignments, HMM profiles and HMM 

databases can be downloaded from: 

http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/mafft_hmm.html 

 

The scripts to compute the alignments and the HMM profiles plus the pipeline to scan 

novel genomes using the HMM databases can be downloaded from: 

https://github.com/isaisg/gfobap/tree/master/mafft_hmm 

https://github.com/isaisg/gfobap/tree/master/scanner_orthogroups_scripts 

 

Assesment of PA/NPA prediction robustness using validation genome datasets 

Seven validation genome groups were assembled representing the following genera: 

Bacillus (order Bacillales, n=222), Burkholderia (order Burkholderiales, n=121), 

Chryseobacterium (phylum Bacteroidetes, n=35), Flavobacterium (phylum 

Bacteroidetes, n=44), Paenibacillus (order Bacillales, n=60), Sphingomonas (Class 

Alphaproteobacteria, n=59), Streptomyces (Group Actinobacteria1, n=90). These 

datasets contained at least 10 genomes in PA and NPA groups and were relatively 

balanced. In addition, we compiled a new set of genomes from Bacillus (n=66) and 

Pseudomonas (n=24) that were labeled as PA or NPA based on their isolation sites. 

Each of the statistical approaches was run on the nine validation datasets to yield 

https://github.com/isaisg/gfobap/tree/master/orthofinder_orthogroups_to_matrices_dataframes
https://github.com/isaisg/gfobap/tree/master/orthofinder_orthogroups_to_matrices_dataframes
http://labs.bio.unc.edu/Dangl/Resources/gfobap_website/mafft_hmm.html
https://github.com/isaisg/gfobap/tree/master/scanner_orthogroups_scripts
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significant PA and NPA Pfam domains. The significant domains were compared against 

the significant Pfam domains predicted from the original and much larger genome 

datasets to find the overlap between these two sets. The significant PA/NPA Pfam 

domains predicted based on the validation sets had on average 65-73%, 40%, and 20-

24% overlap with the original results based on the entire dataset, for Hyperg, Scoary, 

and PhyloGLM, respectively. We deduce that the power and reproducibilty of Phyloglm 

and Scoary is limited when taxa are compared at low taxonomic ranks genus/family). 

 

Growth and transformation of Paraburkholderia Kururiensis M130 affecting rice 

root colonization 

Paraburkholderia kururiensis strain M130 was grown at 30oC in King’s B medium22. E 

coli strains were grown at 37o C in Luria Bertani medium. When needed, antibiotics 

were used in the following concentrations: ampicillin, 100 μg/mL; kanamycin, 50 μg/mL; 

nitrofurantoin, 50 μg/mL; rifampicin 50 μg/mL. 

 

Recombinant DNA techniques 

Recombinant DNA techniques, including digestion using restriction enzymes (New 

England Biolabs UK), agarose gel electrophoresis, purification of DNA fragments, 

ligation with T4 ligase, and transformation of E. coli were performed as described 23. 

Plasmids were purified using EuroClone columns (EuroClone S.p.A., Italy). Triparental 

matings to mobilize DNA from E. coli to P. kururiensis were carried out with the helper 

strain E. coli (pRK2013)24. PCR amplifications were performed using GoTaq Flexi DNA 

Polymerase (Promega, Madison, WI, USA). 

 

Genes reproducibly enriched or depleted in phylogenetically diverse PA and RA 

genomes 

Pfam domains and COG proteins (‘terms’) that were found as significantly PA and RA, 

or soil and NPA in multiple taxa according to the hypergeometric test were retrieved. 

The proportions of genes carrying the term (or multiple terms in cases of a term 

combination in a gene) in each genome were used in a t-test.  
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We searched the direct neighbors of LacI-family genes across all analyzed PA 

genomes. For each gene found, we retrieved its COG annotation which was translated 

to a COG category. Only informative COG categories were used. COGs belonging to 

“Function unknown” and “General function prediction only” were filtered out due to 

limited functional information. 

In order to find LacI-family TF DNA binding sites, we scanned the intergenic 

regions of over 25 bp length between LacI-family genes and directly adjacent (in 

upstream, downstream or antisense head-to-head and tail-to-tail orientations) 

carbohydrate-related genes for abundant kmers of different lengths using wordcount 

(Emboss package25). The most abundant motifs found in multiple taxa were compared 

against their distribution in random intergenic sequences using the Fisher exact test.  

 

Annotating proteins with PREPARADOs as being candidates for secretion 

We annotated PREPARADO-containing proteins as secreted by Sec if they had a 

predicted signal peptide
26 and lacked a transmembrane domain according to IMG 

annotation. A protein was marked as being secreted by T3SS if it had a score > 0.999 

according to EffectiveT3 as implemented by the effectivedb server
27. A domain was 

predicted to be associated with secretion by Sec or T3SS if over 50% of the proteins 

carrying the domain were predicted to be secreted by these secretion systems. The 

proportions of proteins carrying the different domains and being secreted are mentioned 

in Table S21.  

 

Detailed construction of ∆5-Hyde1 strain 

Acidovorax Citrulli (A. citrulli) strain AAC00-1 and its derived mutants were grown on 

nutrient agar (NA) medium (Thermo Fisher Scientific Inc, Waltham, MA) supplemented 

with rifampicin (100 µg/ml). To delete a cluster of five Hyde1 genes (Aave_3191, 

Aave_3192, Aave_3193, Aave_3194, Aave_3195), we performed a marker-exchange 

mutagenesis as previously described28. Briefly, DNA fragments from regions flanking 

the Hyde1 gene cluster were amplified using the following primers: Aave3187SwaFor 

and Aave3187SwaRev (upstream region, 1.2Kb), Aave3196PmeFor and 

Aave3196PmeRev (downstream region, 1.485Kb). A kanamycin (Km) resistance gene 
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(nptII) was amplified from pDK429 with primers km_for  and km_rev. The derived NptII 

gene is flanking with the FLP recognition target sites. The two flanking fragments of the 

Hyde1 cluster were then fused to the nptII gene by overlap PCR30. The derived 

cassettes were cloned into the PCR8/GW-Topo vector (Invitrogen), and cloned into the 

suicide vector pLVC18L-Des31 using LR clonase (Invitrogen, Carlsbad, CA). The 

derived construct was then mobilized into A. citrulli strain AAC00-1 by tri-parental 

mating as previously described32. Double crossover mutants were selected using 

marker-exchange mutagenesis as previously reported31. A. citrulli strain that contained 

impaired genes were selected on NA medium supplemented with rifampicin (100 µg/ml) 

and kanamycin (50 µg/ml). The kanamycin resistant mutant strain was further 

transformed with a modified plasmid vector pBBR1FLP2 that carries the FLP 

recombinase gene33. The mutant strain lost the kanamycin resistance gene and the 

modified pBBR1FLP2 plasmid was further selected as previously described33. The 

marker-free mutant was designated as ∆1-Hyde1, and its genotype was confirmed by 

PCR amplification with primers “Aave3187 check for” and “Aave3196 check rev”. The 

PCR product was confirmed by sequencing. 

The marker-exchange mutagenesis procedure was repeated to further delete four 

Hyde1 loci: Aave_0989, Aave_4706, Aave_4335, and Aave_1108. Primers used to 

amplify the up- and downstream flanking sequences and check the deletions are listed 

in Table S25. The final mutant with deletion of 9 out of 11 Hyde1 genes was designated 

as ∆5-Hyde1, which has been used for competition assay. 

 A similar procedure was also used to generate the ∆T6SS mutant. The primers used 

for amplify the upstream and downstream DNA sequences around the vasD gene 

homologue (Aave_1470) are Aave1469 Swa For and Aave1469 Swa Rev (upstream); 

Aave1471 PmeFor  and Aave1471 PmeFor (downstream).  The ∆T6SS mutant was 

checked with primers “Aave1470 check for” and “Aave1470 check rev”. 
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Figure S1. Density plots of genome size as a function of genome label. X and Y axes 

are genome size and the density in all panels, respectively. a. Taxa in which PA 

genomes and/or soil genomes are significantly larger than NPA genomes. b. A taxon in 

which there are no significant differences among any of the groups tested. c. A taxon in 

which PA and NPA genomes are both significantly larger than soil genomes and there is 

no significant difference in size between PA and NPA genomes. In all kernel density 

plots, the color of the main title represents a distinct phylum; green – Proteobacteria, 

blue – Bacteroidetes, red – Firmicutes, purple – Actinobacteria. Significant genome size 

differences are based on t-test (P < 0.05 is considered statistically significant). Double 

asterisks denote PhyloGLM results. Green – PA genomes are larger than NPA 

genomes, brown – soil genomes are larger than NPA genomes, blue – RA (root-

associated) genomes are larger than soil genomes. Full results are presented in 

Supplementary Table 5. 



Actinobacteria1,
Streptomyces:
PA vs. aquatic

Actinobacteria1,
Streptomyces:
PA vs. Animal

PA

A
ni

m
al

7.0e+06

8.0e+06

9.0e+06

1.0e+07

1.1e+07

PA
N

PA PA
N

PA PA
N

PA PA
N

PA

0

2000

4000

6000

8000
Core
Accessory
Unique
Pangenome

0.0

2.5

5.0

7.5

0.00 0.05 0.10 0.15 0.20

distance

de
ns

ity

Group
Animal
PA

0

3

6

9

0.00 0.05 0.10 0.15

distance

de
ns

ity

Group
Aquatic
PA

PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic

0

2000

4000

6000

8000

10000

12000

14000
Core
Accessory
Unique
Pangenome

PA

A
qu

at
ic

7.0e+06

8.0e+06

9.0e+06

1.0e+07

1.1e+07

Genome sizes
 

Pangenome
sizes

 

Phylo. distances
between genomes

 

0

2

4

6

0.0 0.1 0.2 0.3

de
ns

ity Group
NPA
PA

PA
N

PA PA
N

PA PA
N

PA PA
N

PA

0

2000

4000

6000

8000
Core
Accessory
Unique
Pangenome

PA

N
PA

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

Alphaproteobacteria,
Sphingomonas:
PA vs. NPA

PA

N
PA

3000000

3500000

4000000

4500000

5000000

PA
N

PA PA
N

PA PA
N

PA PA
N

PA

0

2000

4000

6000

8000
Core
Accessory
Unique
Pangenome

0

3

6

9

0.05 0.10 0.15 0.20

distance

de
ns

ity

Group
NPA
PA

 
Bacteridetes,
Chryseobacterium:
PA vs. NPA

0

5

10

0.0 0.2 0.4 0.6

distance

de
ns

ity Group
Animal
PA

PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al

0

2000

4000

6000

8000

10000

12000 Core
Accessory
Unique
Pangenome

PA

A
ni

m
al

4e+06

6e+06

8e+06

1e+07

Burkholderiales,
Burkholderia
PA vs. Animal

0

10

20

0.00 0.05 0.10 0.15 0.20

distance

de
ns

ity Group
Animal
PA

PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al

0

2000

4000

6000

8000

10000

12000 Core
Accessory
Unique
Pangenome

PA

A
ni

m
al

5000000

5500000

6000000

6500000

7000000

7500000

Pseudomonas,
Pseudomonas
PA vs. Animal

0

5

10

0.00 0.05 0.10 0.15 0.20 0.25

distance

de
ns

ity

Group
Aquatic
PA

PA

A
qu

at
ic

4500000

5000000

5500000

6000000

6500000

7000000

PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic

0

2000

4000

6000

8000

10000

12000
Core
Accessory
Unique
PangenomePseudomonas,

Pseudomonas
PA vs. Aquatic

**

**

**

**

**

distance



Genome sizes
 

Pangenome
sizes

 

Phylo. distances
between genomes

 

0

5

10

15

20

0.00 0.05 0.10 0.15 0.20

distance

de
ns

ity Group

PA
Sludge

PA
S

lu
dg

e
PA

S
lu

dg
e

PA
S

lu
dg

e
PA

S
lu

dg
e

0

2000

4000

6000

8000

10000

12000
Core
Accessory
Unique
Pangenome

PA

S
lu

dg
e

5000000

5500000

6000000

6500000

7000000

7500000

Pseudomonas,
Pseudomonas
PA vs. Sludge

0

3

6

9

0.0 0.1 0.2 0.3 0.4

distance

de
ns

ity Group
Animal
PA

PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al

0

2000

4000

6000

8000

10000

12000
Core
Accessory
Unique
Pangenome

PA

A
ni

m
al

4000000

4500000

5000000

5500000

6000000

6500000

Bacillales,
Bacillus:
PA vs. Animal

0

5

10

0.0 0.1 0.2 0.3 0.4

distance

de
ns

ity Group
Aquatic
PA

PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic

0

2000

4000

6000

8000

10000

12000
Core
Accessory
Unique
Pangenome

PA

A
qu

at
ic

4000000

4500000

5000000

5500000

6000000

Bacillales,
Bacillus:
PA vs. Aquatic

0

2

4

6

8

0.0 0.1 0.2 0.3

distance

de
ns

ity

Group
Animal
PA

PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al PA
A

ni
m

al

0

2000

4000

6000

8000

10000

12000 Core
Accessory
Unique
Pangenome

PA

A
ni

m
al

4e+06

5e+06

6e+06

7e+06

8e+06

Bacillales,
Paenibacillus:
PA vs. Animal

0

3

6

9

0.0 0.1 0.2 0.3 0.4

distance

de
ns

ity
Group

PA
Sediment

PA
S

ed
im

en
t

PA
S

ed
im

en
t

PA
S

ed
im

en
t

PA
S

ed
im

en
t0

2000

4000

6000

8000

10000 Core
Accessory
Unique
Pangenome

PA

S
ed

im
en

t3500000

4000000

4500000

5000000

5500000

Bacillales,
Bacillus:
PA vs. Sediment

0

5

10

15

20

0.00 0.05 0.10 0.15 0.20 0.25

distance

de
ns

ity Group
Aquatic
PA

PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic PA
A

qu
at

ic

0

2000

4000

6000

8000 Core
Accessory
Unique
Pangenome

PA

A
qu

at
ic

3e+06

4e+06

5e+06

6e+06

Bacteroidetes,
Flavobacterium:
PA vs. Aquatic

**

**

**

**
**



19 
 

Figure S2. PA and NPA bacteria have similar pangenome size. PA genomes tend to 

be more closely related (lower phylogenetic distance between genomes) and therefore 

have large core genome and lower number of unique genes in comparison to NPA 

genomes. Twenty random genomes were selected from genera that have mixed PA and 

NPA classifications. For each NPA group, we used only organisms isolated from the 

same type of environment (e.g. Aquatic environment). The genome selection process 

aimed to minimize differences in phylogenetic distance distribution between the PA and 

NPA groups (Methods). Left panels: differences in genome size between PA and NPA 

groups. Y axis is genome size. Central panels: number of genes within each group of 

genes (core, accessory genes, unique genes, pangenome). Right panel: phylogenetic 

distances between all pairs in each group. ** significant difference (t-test P < 0.05).  
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Figure S3.  

Fold change differences in gene categories between PA/NPA and RA/soil genomes of 

the same taxon. Top panel: PA vs. NPA genomes. Bottom panel: RA vs. soil genomes. 

For both panels, the heat map indicates the level of enrichment or depletion. Hot 

colored cells indicate significantly more genes (q value < 0.05, FDR corrected two-sided 

t-test) in PA and RA genomes in the upper and lower panels, respectively. Histograms 

on the upper and right margins represent the total number of genes compared in each 

column and row, respectively. PA – plant-associated, NPA – non-plant associated, RA – 

root associated, soil –soil-associated. * not a formal class name. Carbohydrates – 

Carbohydrate metabolism and transport gene category. N.S – non-significant; q value 

>= 0.05 (FDR corrected two-sided t-test). FC – fold change. Full COG category names 

from the x axis appear in Table S6. Note that cells with high estimate absolute values 

(dark colors) are based on categories of few genes and are therefore more likely less 

accurate. 
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Figure S4. Overview of the algorithm used to call PA and NPA genes (proteins) and 

gene operons. High quality PA and NPA genomes were collected. All protein and 

protein domains were retrieved from genomes. Different protein/domain clustering 

approaches were used based on existing functional annotation (COG, Pfam, TIGRfam, 

KEGG orthology) or based on running OrthoFinder over all protein coding genes (for 

simplicity TIGRfam and KEGG orthology were not mentioned in the figure). Note that 

clusters may contain a combination of orthologous and paralogous genes. Significant 

PA/NPA clusters (enriched with PA/NPA proteins/domains) were called based on five 

tests: PhyloGLM and the Hypergeometric test, both gene copy number and gene 

presence/absence versions (phyloglmcn, phyloglmbin, hypergcn, hypergbin), and 

Scoary. Genes from PA and NPA genomes in PA and NPA clusters, respectively, are 

marked with a triangle. Genes from the significant protein clusters (OrthoFinder, COG) 

were separately used to predict PA/NPA gene operons comprised of nearly exclusively 

adjacent PA/NPA genes sharing the same orientation. PA Pfam domains were used to 

search the overlap between those and plant-like protein domains (PREPARADOs). 
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Figure S5. Orthofinder exhibits lower clustering fragmentation than UCLUST. 

We detected taxon specific markers in the 3837 genomes utilized in this study using 

Phyla_Amphora18. Ideally, all the coding sequences (CDS) that were identified as a 

homologue of a particular Phyla_Amphora marker should be clustered in a single 

orthogroup. Using this logic, we derived two metrics from the Phyla_Amphora markers 

detected to quantify the quality of the orthogroups output by UCLUST and Orthofinder. 

The purity index quantifies how many CDS are contained in all the orthogroups needed 

to cover the total number of CDS identified by Phyla_Amphora as homologues of a 

specific marker. The fragmentation index quantifies the total number of orthogroups 

needed to recover the total number of homologues identified by Phyla_Amphora of a 

specific marker. For ease of visualization both metrics are transformed to span values 

between 0 to 1, values closer to 1 denote higher purity and integrity of the orthogroups 

analyzed. The data and scripts utilized to compute these measurements across all taxa 

are available on: 

https://github.com/isaisg/gfobap/tree/master/phyla_amphora_benchmark. 

 

https://github.com/isaisg/gfobap/tree/master/phyla_amphora_benchmark
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Figure S6. Number of significant orthogroups predicted by the presence/absence 

(binary) versions of the Hypergeometric test (hypergbin) and PhyloGLM (phyloglmbin), 

and by Scoary. The numbers represent gene clusters found either in each group 

separately (where circles do not overlap) or in the overlap between the groups. 

Hypergbin is likely the most promiscuous and sensitive approach as it predict enriched 

genes in high numbers and does not require a phylogenetic signal (monophyletic genes 

can be significant in hypergbin). It may lead to many false positive predictions. 

Phyloglmbin is more stringent than hypergbin but it may be less sensitive than 

hypergbin as it cannot predict any significant gene in certain taxa that lack sufficiently 

strong phylogenetic signal (e.g. Actinobacteria2, Xanthomonadaceae). Scoary is 

probably the most stringent approach that combines a naive statistical test, a 

phylogenetic test, and label permutations. Therefore it frequently yields the lowest 

number of significant predictions. 
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Figure S7. Number of significant orthogroups predicted by the copy number versions of 

the Hypergeometric test (hypergcn) and PhyloGLM (phyloglmcn), and by Scoary. The 

numbers represent gene clusters found either in each group separately (where circles 

do not overlap) or in the overlap between the groups. Hypergcn is likely the most 

promiscuous yet sensitive approach as it predict enriched genes in high numbers and 

does not require a phylogenetic signal (monophyletic genes can be significant in 

hypergbin). It may lead to many false positive predictions. Phyloglmcn is more stringent 

than hypergcn but it may be less sensitive than hypergcn as it cannot predict any 

significant gene in certain taxa that lack sufficiently strong phylogenetic signal (e.g. 

Actinobacteria2, Xanthomonadaceae). Scoary is probably the most stringent approach 

that combines a naive statistical test, a phylogenetic test, and label permutations. 

Therefore it frequently yields the lowest number of significant predictions. 
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Figure S8. Euler diagrams of the significant PA (green), NPA (yellow), RA (blue), and 

soil (brown) COGs of all nine analyzed taxa. Statistical significance was estimated by 

hypergcn. 
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Figure S9. Copy number of PA genes in PA and NPA genomes of Bacteroidetes. 

PA Genes were predicted by a. hypergbin, b. hypergcn, c. phyloglmbin, d. 

phyloglmcn, e. scoary. PA genes are more abundant in PA genomes than in NPA 

genomes from each of the different environments (t-test, p < 0.05). 
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Figure S10. Copy number of PA genes in PA and NPA genomes of 

Actinobacteria1. PA Genes were predicted by a. hypergbin, b. hypergcn, c. 

phyloglmbin, d. phyloglmcn, e. scoary. PA genes are more abundant in PA genomes 

than in NPA genomes from each of the different environments (t-test, p < 0.05). 

 



a



b
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Figure S11. PCoA analysis. a and b show different taxa. We visualized the overall 

contribution of statistically significantly enriched/depleted orthogroups to the 

differentiation of PA and NPA genomes based on Principal Coordinates Analysis 

(PCoA). We used the Canberra distance to perform PCoA over a pan genome matrix 

with the total number of orthogroups across a taxon (Full Matrix, including non-

significant orthogroups) and pan genome matrices containing only the corresponding 

enriched/depleted orthogroups as called by the different algorithms utilized (hypergbin, 

hypercn, phyloglmbin, phyloglmcn and scoary). The black lines in the plots correspond 

to the fit of a logistic regression that modeled the binary label of each genome (PA, 

NPA) given the two first axes of each plot. The blank plots occur when there were not 

statistically significantly enriched/depleted orthogroups reported by a particular method 

or because the number of enriched/depleted orthogroups were not sufficient to recover 

the total number of genomes across a taxon. Inside each scatterplot, we include the 

Akaike Information Criterion (AIC) value output from the logistic regression fit. Smaller 

AIC values represent a better quality of the model to the data.  
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Figure S12. Reads from 38 shotgun metagenome samples were mapped to significant 

PA, NPA, RA, and soil genes predicted by the hypergeometric test, gene copy 

number version (hypergcn). Normalized reads are defined as log2((A * 10000)/(B * 

C)), where A is defined as hits of metagenomes reads against predicted gene set (e.g. 

PA genes of taxon X), B is defined as hits against phylum-specific phylogenetic marker 

genes (taking into account the taxon fraction within the sample), and C is defined as 

number of predicted gene clusters (e.g. PA gene clusters of taxon X). Samples in which 

either B or C equals 0 (namely either taxon is absent from the metagenome or there is 

an unavailable reference) and therefore could not be normalized were omitted. The 

Arabidopsis, cucumber, wheat, and poplar metagenomes were paired with the other 

samples from the same plant. These paired samples were taken from the same soil 

(cucumber and wheat samples were taken from the same pot) and were sequenced 

together. RA samples are also PA samples but not the other way around, because 

some PA samples were taken from rhizosphere which is different from our operational 

definition of RA: rhizoplane and endophytic compartment. The last four columns 

represent the distribution across all relevant samples. An asterisk above/below a 

boxplot pair represents a significant difference in the expected direction (P < 0.05, two 

sided t-test). RA genes are required to be more abundant in PA over NPA 

metagenomes and also in RA over soil metagenomes. 
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42 
 

Figure S13. Reads from 38 shotgun metagenome samples were mapped to significant 

PA, NPA, RA, and soil genes predicted by the hypergeometric test, gene 

presence/absence version (hypergbin). Normalized reads are defined as log2((A * 

10000)/(B * C)), where A is defined as hits of metagenomes reads against predicted 

gene set (e.g. PA genes of taxon X), B is defined as hits against phylum-specific 

phylogenetic marker genes (taking into account the taxon fraction within the sample), 

and C is defined as number of predicted gene clusters (e.g. PA gene clusters of taxon 

X). Samples in which either B or C equals 0 (namely either taxon is absent from the 

metagenome or there is an unavailable reference) and therefore could not be 

normalized were omitted. The Arabidopsis, cucumber, wheat, and poplar metagenomes 

were paired with the other samples from the same plant. These paired samples were 

taken from the same soil (cucumber and wheat samples were taken from the same pot) 

and were sequenced together. RA samples are also PA samples but not the other way 

around, as some PA samples were taken from rhizosphere which is different from our 

operational definition of RA: rhizoplane and endophytic compartment. The last four 

columns represent the distribution across all relevant samples. An asterisk above/below 

a boxplot pair represents a significant difference in the expected direction (P < 0.05, two 

sided t-test). RA genes are required to be more abundant in PA over NPA 

metagenomes and also in RA over soil metagenomes. 
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Figure S14. Reads from 38 shotgun metagenome samples were mapped to significant 

PA, NPA, RA, and soil genes predicted by Scoary. Normalized reads are defined as 

log2((A * 10000)/(B * C)), where A is defined as hits of metagenomes reads against 

predicted gene set (e.g. PA genes of taxon X), B is defined as hits against phylum-

specific phylogenetic marker genes (taking into account the taxon fraction within the 

sample), and C is defined as number of predicted gene clusters (e.g. PA gene clusters 

of taxon X). Samples in which either B or C equals 0 (namely either taxon is absent 

from the metagenome or there is an unavailable reference) and therefore could not be 

normalized were omitted. The Arabidopsis, cucumber, wheat, and poplar metagenomes 

were paired with the other samples from the same plant. These paired samples were 

taken from the same soil (cucumber and wheat samples were taken from the same pot) 

and were sequenced together. RA samples are also PA samples but not the other way 

around, as some PA samples were taken from rhizosphere which is different from our 

operational definition of RA: rhizoplane and endophytic compartment. The last four 

columns represent the distribution across all relevant samples. An asterisk above/below 

a boxplot pair represents a significant difference in the expected direction (P < 0.05, two 

sided t-test). RA genes are required to be more abundant in PA over NPA 

metagenomes and also in RA over soil metagenomes. 
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Figure S15. Reads from 38 shotgun metagenome samples were mapped to significant 

PA, NPA, RA, and soil genes predicted by PhyloGLM, gene copy number version 

(phyloglmcn). Normalized reads are defined as log2((A * 10000)/(B * C)), where A is 

defined as hits of metagenomes reads against predicted gene set (e.g. PA genes of 

taxon X), B is defined as hits against phylum-specific phylogenetic marker genes (taking 

into account the taxon fraction within the sample), and C is defined as number of 

predicted gene clusters (e.g. PA gene clusters of taxon X). Samples in which either B or 

C equals 0 (namely either taxon is absent from the metagenome or there is an 

unavailable reference) and therefore could not be normalized were omitted. The 

Arabidopsis, cucumber, wheat, and poplar metagenomes were paired with the other 

samples from the same plant. These paired samples were taken from the same soil 

(cucumber and wheat samples were taken from the same pot) and were sequenced 

together. RA samples are also PA samples but not the other way around, as some PA 

samples were taken from rhizosphere which is different from our operational definition 

of RA: rhizoplane and endophytic compartment. The last four columns represent the 

distribution across all relevant samples. An asterisk above/below a boxplot pair 

represents a significant difference in the expected direction (P < 0.05, two sided t-test). 

RA genes are required to be more abundant in PA over NPA metagenomes and also in 

RA over soil metagenomes. 
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Figure S16. Reads from 38 shotgun metagenome samples were mapped to significant 

PA, NPA, RA, and soil genes predicted by PhyloGLM, gene presence/absence 

version (phyloglmbin). Normalized reads are defined as log2((A * 10000)/(B * C)), 

where A is defined as hits of metagenomes reads against predicted gene set (e.g. PA 

genes of taxon X), B is defined as hits against phylum-specific phylogenetic marker 

genes (taking into account the taxon fraction within the sample), and C is defined as 

number of predicted gene clusters (e.g. PA gene clusters of taxon X). Samples in which 

either B or C equals 0 (namely either taxon is absent from the metagenome or there is 

an unavailable reference) and therefore could not be normalized were omitted. The 

Arabidopsis, cucumber, wheat, and poplar metagenomes were paired with the other 

samples from the same plant. These paired samples were taken from the same soil 

(cucumber and wheat samples were taken from the same pot) and were sequenced 

together. RA samples are also PA samples but not the other way around, as some PA 

samples were taken from rhizosphere which is different from our operational definition 

of RA: rhizoplane and endophytic compartment. The last four columns represent the 

distribution across all relevant samples. An asterisk above/below a boxplot pair 

represents a significant difference in the expected direction (P < 0.05, two sided t-test). 

RA genes are required to be more abundant in PA over NPA metagenomes and also in 

RA over soil metagenomes. 
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Figure S17. All eight deletion mutant gene strains of putative PA genes in 

Paraburkholderia kururiensis M130 do not affect bacterial growth rates. Mutants are 

described in Table S17. 
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Figure S18. Direct neighbors of LacI-family transcription factor genes. Genes next to 

LacI-family genes were retrieved in all possible orientations relative to the LacI-family 

gene: upstream sense, downstream sense, or antisense (head-to-head and tail-to-tail). 

The COG annotation of each gene was retrieved and was translated into COG 

category.   
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Figure S19. Various protein and protein domains enriched in PA and RA bacteria from 

multiple taxa and occasionally identified by multiple approaches. Double asterisks 

indicate a significant difference between the compared groups (P < 0.05, t-test). Filled 

circles below each axis denotes the number of approaches in which the protein/domain 

was found to be significant (maximum is five). 
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Figure S20. Various protein and protein domains enriched in NPA and soil bacteria 

from multiple taxa and occasionally identified by multiple approaches. Double asterisks 

indicate a significant difference between the compared groups (P < 0.05, t-test). Filled 

circles below each axis denote the number of approaches in which the protein/domain 

was found to be significant (maximum is five). 

  



Plant-like domains (n=708):
Pfam domains that are present in 
plants and bacterial genomes, 
yet are at least x2 more abundant in plants
 

Domains predicted to be PA/RA in at least 4 tests 
  (n=2670)

 
 
 
 

Find overlap

64 Plant resembling PA and RA domains 
(PREPARADOs)

All Pfam domains (n=16306)

A feature statistically enriched (Fisher exact test) with PREPARADOs 
in comparison to the two random domain sets

Plant proteins containing PREPARADOs 

Involvement in 
plant
disease 
resistance

LRRNB_ARC effector decoyTIR

LRRNB_ARC effector decoyRPW8

Random set (n=500)
Random set (n=500)

Resources:
HMMsearch of NB_ARC,
TIR, TIR2, RPW8 domains
against proteins from
Phyozome and BrassicaDB
 

Discarding domains
that are significant
NPA/soil in more 
than two tests (n=1779)
 

 Each domain was tested for being 
PA/RA/NPA/soil by the five approaches 
in the nine taxa



58 
 

Figure S21. The algorithm used to predict PREPARADO and their co-enrichment with 

domains common to plant disease resistance proteins of the NLR class. LRR is 

illustrated as a PREPARADO as LRR6 and LRR8 are also PREPARADOs. 
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Figure S22. PREPARADO abundance as a fraction of total Pfam domains across the 

nine taxa. 
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Figure S23. An illustration of PREPARADOs contained in putative effector binding 

or disease resistance proteins in plants. a. Examples of microbial proteins, each with 

two PREPARADOs (LRR8, Pkinase_Tyr, Kelch_3, Kelch_4). b. Integration of 

PREPARADOs into NB-ARC domains in different plant proteins. NB-ARC is present in 

many disease resistance (R) proteins. SUMM2 was suggested to act as an R gene34.  
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Figure S24. Maximum-likelihood phylogenetic trees of a few PREPARADO-containing 

proteins demonstrating high similarity between those found in PA bacteria, fungi, 

oomycetes, and plants. Only a small fraction of the proteins in the tree are presented 

due to size limitation. In each label the long integer represents an IMG gene ID. 

Accession starting with XP_ are Refseq proteins. 
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Figure S25. Jekyll gene variability and neighbors. a. Comparison of the genome 

similarity between four Acidovorax isolates from naturally grown Arabidopsis leaves in 

Switzerland35. b. Multiple sequence alignments using online MAFFT of the proteins 

shown in Figure 6b. c. Comparison of evolutionary changes between Jekyll genes 

versus short control genes in the same genomic neighborhood is presented in Table 

S24. d. A Jekyll locus within a conserved genomic region showing specific presence in 

non-pathogenic PA Acidovorax isolated from different plants (upper green labels) and 

soil-associated (brown labels) Acidovorax. Below are NPA Acidovorax and Delftia 

genomes (orange labels) and pathogenic PA Acidovoarx (two last green labels) e. 

Multiple sequence alignment using MAFFT of proteins marked in d.  
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Figure S26. Hyde genes variability and protein motifs. a. Multiple sequence 

alignment by MAFFT of the Hyde1 proteins presented in Figure 6c. b. A variable Hyde 

locus. Note the absence of the locus from the last soil-associated isolate despite the 

conservation of the genomic environment. c. Multiple sequence alignment by MAFFT of 

the Hyde1 proteins presented in b. d. Similarity between Hyde and other Hyde1-like 

proteins of different Proteobacteria. From top to bottom, proteins in the following 

genera: Acidovorax, Aeromonas, Plesiomonas, Dickeya, Xenorhabdus, Enterobacter, 

Pantoea, Pluralibacter, Klebsiella, Tolumonas, Delftia, Pseudomonas, Erwinia, 

Salmonella, Yersinia, Cronobacter, Archangium, Herbaspirillium, Sphingomonas, 

Variovorax, Vibrio. Red color denotes hydrophobic amino acids. A transmembrane helix 

is predicted in the N terminus. The rest of the protein shows no conservation.  
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Figure S27. Association between Hyde loci and T6SS. a. Genomic proximity 

between different Hyde2 proteins (marked in red, number represent IMG gene number) 

and different T6SS components and a fusion event between Hyde2 and PAAR domain 

in Azospirilium. AA – amino acids. b. Similarity between Hyde2 protein of Pseudomonas 

syringae pv. tomato DC3000 (DC3000 gold standard) and FHA1 protein - a core 

scaffolding protein of the P. aeruginosa H-T6SS that is required for protein secretion by 

T6SS36. The amino acids marked in red are phosphopeptide binding motif. Hyde2 is 

shorter than the FHA protein and lacks the FHA domain (pfam00498).  

 

 

 

 

Figure S28. Hyde loci in Acidovorax citruli AAC00-1. 
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Figure S29. Recovered prey cells after co-incubation with Acidovorax aggresor 

strains. Chloramphenicol-resistant prey cells E. coli BW25113 (a), L58 Pseudomonas 

(b), and L434 Pseudomonas (c) were mixed at equal ratio with different Acidovorax 

strains or NB medium. After co-incubation of the indicated times on NB agar plates at 

28C, mixed populations were resuspended in NB medium and spotted on 

Chloramphenicol-containing NB agar. Means with SD are shown (n≥3). 

 

 

 

 

 

 

 

 

 


